GNU PROLOG

A Native Prolog Compiler with Constraint Solving over Finite Domains

Edition 1.4, for GNU Prolog version 1.2.1
July 31, 2000

by Daniel Diaz

Copyright (C) 1999,2000 Daniel Diaz

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice
and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the Free Software Foundationf], 59 Temple Place - Suite 330, Boston, MA 02111, USA.

Thttp://www.fsf.org/

CONTENTS 1
Contents

[Acknowledgments 9

1__Introduction 11

B Using GNU Prolog 13

1 Introductionl L L L e 13

B.2 "The GNU Prolog inferactive inferpretef 13

R.2.1 otarting /exiting the interactive mterpretef 13

B.2.2 T'he inferactive inferprefer read-execute-write loog 13

2.3 Consulting a Prolog PrOgramm« v v v v v v v v e e e e e e e e e e e e 15

BZ 4 Inferrupfinga querylo oo oo 16

222 The me ediToll L L Lo L L e e e e e e e e e e e e e e 17

E.3 Adjusting the size of Prolog stackd 18

P4 The GNU Prolog compilen] 0 e e e e e e e e e 19

g4l Iihtferent Kinds of codes L L L L L s e e e e e e e e e e e e e e 19

272 Compilation schemd oo 19

B.4.3 Using the compilenl« . e e e e 21

g.4.4 Running an executablq 00000000 oo 24

£.4.0 Generating a new_interactive iterpreten e .. 25

B4 The hexadecimal predicate name encoding 25

B Debugging 29

BT Infroducfionl e e e 29

B.Z_ The procedure box model] e 29

B3 Debugging predicated e 31

3.1 Running and stopping the debugged 31

3.2 Leashing porfd 31

B33 Spy-poinfd e e e e e e e e e e e e e 31

B4 Debugging messagedot e e e e e e e e e e e 32

B:5 Debugger commandyo e e e e e e e 32

p.6 I1he WAM debuggerl o e e e e e 34

d—_Formaf of definifiond 35

BT General Tormall L e e e e e e e e e e 35

B2 Typesand modeg e e e e e e e e e e e e e 35

EZ3EITATS . . . o o o e e e e e e e e e 37

Ual (zeneral Tormat and error contextl L . . e . 37

372 Insfanfiafion errad e e 37

E3.3 IYDE EIrol o o e e e e e e e e e e e e e e e 38

dad DOomain errall . . . oL .o L L L e 38

| 28K 5 Bxastence erronl L L L L L L L L s e e e e e e e e e e e e e e e e e e 39

36 Permission erroll L L L L e e e e e e e e e e e e e e e e e 39

E3.7 Representafion erron e e e e e e e e e e 39

B3R Fyvalnafion errod e e e e e e e e e e e e e e 40

E3T Resource errtall v o v e 40

E3TU _SVNEAX €ITOI - « « « « v v v o e e e e e e e e e e e e e e e e e 40

E3TT SVSTem €10l v v v o o e 40

b__Prolog directives and control constructs 41

BT Prolog directived o o o e e e e e e e 41

BT Infroducfion e 41

b.1.2 dynamic/d] e e 41

bI3 public/dl. e e e 41

BT A mulTifiTe7q o 42

b-I.5 discontiguous/d] 42

BET6 ensure Tinked7Zdl v v v it e e e e e e e e e e e e e e 43

2 CONTENTS

1.7 ___built_in/0, built_in/1, built in fd/0, built in fd/1 43

BIT8 dncTude/Zdl e e e e 44

B. 1.9 ensure Toaded/To 44

D U D/ 3 . o e e e e e e e e e e e e e e s e s e e 44

BETTIT char conversionZd v i it e e e 44

b.I.IZ2 set_prolog flag/d o e e e e 45

BT I3 3nitialization/d L e e 45

b-I.T4 foreign/2 foreign/d e 45

p.2 Prolog control constructy L oL o oL e e e e e e 46
b.Z2.1 true/0, £ail/0. T70 e e e e e 46

b.2.2 (C,7)/2 - conjunction, (;)/2 - disjunction, (->)/2 -if-theq 46
BZ3 ™ Call7al oot e e 47

b2 4 catch/3. throw/d e e 47
6__Prolog built-in predicated 49
EI _Typetesting 49
p.l.1 var/1l, nonvar/1l, atom/1, integer/1, Tloat/1, number/1, atomic/1 |

| compound/1, callable/1, 1ist/1, partial_list/1, list or_partial_list/1 . 49
B2 Termumificafion L L L 50
b.2.1 (=)/2 - Prolog unificafion 50

.22 unify with occurs_check/2 50

b.2.3 (\=)/2 -not Prologunifiabld 50

B3 Term compariSOm v v v e 51
b.3.1 Standard tofal ordering of fermd 51

D.0.2 (==)/2 - term 1dentical, (\==)/2 - term not identical, |

| (6<) /2 - term less than, (0=<) /2 - term less than or equal to |
| (0>) /2 - term greater than, (@>=)/2 - term greater than or equal td 51
b.3.3 compare/J e e e e e e e e e e e 52

B2 Term ProCesSING . . . v v v vt e e e e e e e e e e e e e e e 52

b AT functor/73 52

0.4 <2 53

90 S S D /4 .. [53

b44 copy_term/J 54

b A5 setarg/Z. setarg/3 e e e e e 54

b.5o Variable naming/numbering L. L L L L e e e 55
b.5.T name_singleton_vars/1 55

b52Z mame_query_vars/d e e e e e e 55

b.-5.3 bind_variables/2. numbervars/3. numbervars/1 56
ELdTermref73 . . . Lo 57
EEAmthmefid. 57
b.6.1 Evaluafion of an arithmefic expression 57

b-62 (As)/2 - evaluale eXpression] v v v v v v e e e e e e e e e e e 59

b.6.o (=:=)/2 - arithmetic equal, (=\=)/2 - arithmetic not equal, |

| (<) /2 - arithmetic less than, (=<)/2 - arithmetic less than or equal to, |
| (>) /2 - arithmetfic greater than, (>=)/2 - arithmefic greafer than or equaltd . . 60
b7 Dynamic clause managemenf] Lo 60
b1 Introductionl L L L e e e e e e e e e e e e 60

(.2 ___asserta/I, assertz/d e e e e e e 61

B3 retract/d 62

Bl A retractall7dl e e e 62

B cTause/A e e e e e e e e e e 62

Bl abolish/7T e 63

bR Predicafe informafionl L L e e 64
b.8.1 current predicate/d L e 64

p.8.2 predicateproperty/Jqo L e 64

BEY Allsolufiond L e e e e e e 65

09 1 Introduction

CONTENTS 3

BE92Tindall73 65
B.9.3 bagof/3.setof/3 e e e 66
.. 67
EITOT Tnfroductiod 67
b.J0.2 current_imput/d] e 68
b.J0.3" current_output/d 68
b.10.4 set_input/d e e e e e e e 69
b.1I0.5 set output/d 69
B.J0.6 open/4, open/3 e e e e e e 69
b.I0.7 close/2. close/dl e e e e e e e 71
b.J0.8 flush_output/I, flush output/q 72
EI09 current stream/T L 72
B.I0.I0 stream_property/9 73
B-I0.IT at_end of stream/I, at_end of stream/Q 74
b.J0.TZ2 stream position/d o v v i i e e e e e 74
b.J0.I3 set_stream_position/2d e e 74
BIOTASEeR7A o o o i e e e e e e e e e 75
EI0.I5 character count/d 76
ETOTI6 Tine count/73 e e e 76
BI0.I7 Tine position/d o o v v v v it e e e e e e 77
EITOTI8 stream Tine column/3o it
EI0TI9 set stream Tine column/3 o e 78
bEI020 add stream alias/do 78
ET02T current alias/ L e 79
b.10.22 set_stream_type/d e e e e e 79
BEI023 set stream eof action/do 80
b.10.24 set_stream_buffering/J. 80
EIT Constanf ferm sfreamd L Lo e e e e e e 81
DIl 1T Introductionl oL e e e e e e e e e e e e e e e e 81
p.l1.2 open_input_atom_stream/2. open_input_chars_stream/2 |

[open_input_codes_stream/2 81
p.1l.0 close_input_atom_stream/1, close_input_chars_stream/1, |

I close_input_codes_stream/d 82
pb.11.4 open_output_atom_stream/1, open_output_chars_stream/1, |

[open_output_codes_stream/q]o 83
p.ll.o close_output_atom_stream/2, close_output_chars_stream/2 |

[close output_codes_stream/d 83
b.12 Character input/outputl e 84
p.IZ.T get_char/2, get_char/1, get_code/I. get code/q 84
b.12.2 get_code no_echo/2, get codeno_echo/1 85
b-12.3 peek_char/2, peek_char/1, peek_code/I, peek code/3 86
b.12.4 unget_char/2, unget_char/1, unget_code/2, unget code/1 86

b. 125 put_char/2, put_char/I, put_code/I, put_code/2, nl/1I, nI/Q 87

b.15 Byte input/outpufl e e e 88
b.I3.T get byte/2, get byte/d] e 88
b.13.2 peek byte/2, peek byte/q Lo 88
b.13.3 unget_byte/2, unget byte/do 89

b. 134 put_byte/2, put_byte/d 89

b.14 Term mput/output] L e e e e e 90
b.-14.T read term/3. read term/2. read/2. read/qo 90
b.14.2 read_atom/2, read_atom/1, read_integer/2, read_integer/1, |

| read number/2, read number/1o 91
b.14.3 read_token/2. read token/1] 92

b. 144 syntax_error_info/4 e e e 93

CONTENTS

0.14.06 write_term/3, write term/2, write/2, write/1, writeq/2, writeq/1, |
write_canonical/2. write_canonical/l, display/2, display/1l, print/2, |
print/d e e 94

b.14.7 format/3, format/2 e 96

b.14.8 portray_clause/2, portray_clause/d 98

b. 149 get_print_stream/1] 99

0. 1210 0D/ . . o o o e e e e e e e 99

b.I4. 1T current op/3 o o e e e e e e e 101

BI4.12 char conversion/a e e e e e e e e 101

bET4T3 current char conversion/2o 102

b.15 Input/output from/to constant termg oo 103

EI5.T read term from_atom/3. read from_atom/2. read token from_atom/34 103

b.I5.2 read term from chars/3, read from chars/2, read token from chars/23 103
b-15.3 read_term from_codes/3, read _from _codes/2, read_token from codes/d 104

p.1o.4 write_term to_atom/3, write_to_atom/2, writeq_to_atom/2, |
write_canonical_to_atom/2, display_to_atom/2, print_to_atom/2, |

Tormat £o atom/Z3 e e e e e e e 104

pb.lo.o write_term_to_chars/3, write_to_chars/2, writeq_to_chars/2. |
write_canonical_to_chars/2, display_to_chars/2, print_to_chars/2 |

format €to chars/3 e e 105

p.1o.6 write_term _to_codes/3, write_to_codes/2, writeq_to_codes/2, |
write_canonical_to_codes/2, display_to_codes/2, print_to_codes/2 |

Tormat £o codes/a vt e e e e e e e e e 105

b.16 DEC-10 compatibility input/outputf 106
EI6T Inmfroducfiod e 106
b.16.2 see/1, tell/I, append/d. 106
b.I6.3 seeing/1, telling/d e e 107
B-I6.4 seen/0. €old/Q 107
b.16.5 get0/1, get/I, skip/d e 107
P.10.0 put/1, tab/1 o e e e e e 108

BI7 Term eXpansion] . . « « « v v vt e 108
B-I7.T Definife clause grammargo 108
b.I72 expand_term/2, term_expansion/J e e 110
p.I7.3 phrase/3. phrase/3 e 110

b.I8 Logic, confrol and excepfiond e 111
b.I8.T abort/0, stop/0, top_level/0, break/0, halt/I, halt/q 111
b.I82 once/I, (\+)/1 -not provable, call_with_args/1-11, call/9d 112

B IS8 repeat/Q e e e e e 112
BIRA ToT73 . . . o o o o e e e e e 113

B-I9 ATomic Term processingo oo e e e e e e 113
b.I9.T atom_Tength/J e e 113
bBET92 atom concat/73 114
BEIT93 subatom/H 114
EI9 4 "char code/d 115
B.I9.5 Tower_upper/d 115
b.19.6 _atom chars/2. atom codes/d Lo 115
b.19.7 number_atom/2, number_chars/2, number codes/3 116
BIOR mame7D o o e e e e e 117
BET9.9 atom hash7 e e e e e e e e e e e 118
B-19.10 new_atom/3. new_atom/2. new_atom/qo 118
BEI9TIT current atom/o 119
B-19.T2 atom property/2o 119
P20 List processing 120
B.20.T append/3 e e e e 120
B-20.2 member/2. memberchk/2o 120
B20.3 reverse/d 121

CONTENTS 5

b.20.5 permutation/d e e e e 121
b.20.6 prefix/2, suffix/3 122
B207 subTist72 122
0.20.8 last/d o e e e e e e e e e e s e e e 123
0.20.9 length/2 e e e e e e e e e e e 123
0.20.10 nth/J o e e e e e e e e e e e e e e e e e e 123
20117 max Iist/2. min Tist/2, sum Tist/3 124
b.20.12 sort/2, sort0/2, keysort/2 sort/1, sort0/1I, keysort/d. 124
B2T Global variabled L e e e e e 125
b.2I.T g assign/2, g assignb/2, g 1ink/Jd o i i e e e 125
B212 g read/d e e e e 126
B2I.3 garray size/J 126
B2T.4 Exampled o e e e e e e e e e e e e e 127
B.22 Prolog statd e 129
b.22.T set_prolog flag/d e e e e 129
b.22.72 current_prolog T1ag/d e e e 130
223 set_bipmame/J e e e e e e e 131
b.22.4 current.bipmame/3 131
b.22.5 write pl state file/I1, read pl state file/1. 131
b.23 Program statd e e e e 132
b.23. 1 consult/1, °.7/2 - program consulfl 132
BZ32Z ToadZdl o o e e e e e e 133
b.23.3 Tisting/1, I1isting/T o o o e e e e e e e e e 133
B:Z24 Sysfem stafisticd 134
b.24.T statistics/0. statistics/3 Lo 134
0.24.2 user_time/l1., system_time/1, cpu_time/1, real time/1 135
b.25 Random number generafo] 135
25T set_seed/I. randomize/Qo 135
B.25.2 get_seed/I e e e e e e 136
BE253 random/7T 136
BE25. 4 random/3 L e e e e e e e e 136
b-26 File name Processingo i et e e e e e e e e e e e e e 137
E2Z6 T absoTute File mame/d v v v v v vt e e e e e e 137
b.26.2 decompose_file name/4 e e e e e e e 137
b.26.3 prolog filemname/J 138
b.27 Operating system inferfacdo 138
b.27. 1T argument_counter/dl 138
b.272 Targument_value/d e e e e 139
b.27.3 argument _Iist/d e e e e e e e e e 139
BEZ7 A "environ/7do e e e 140
b.27.0 make_directory/1, delete_directory/1l, change directory/1 140
b.27.6 working directory/d 140
2777 directory_Tiles/ e e e e 141
BEZ78 rename FiTe/A e 141
b.27.9 delete file/1. unlink/d e 142
b.27.10 file permission/2, file exists/d 142
b.27 11 TiTe property/d o e e 143
b.27 12 temporary mname/d e e e e e e e 144
B 2713 Temporary_Tile/3o e e e e e e e 145
BE27T4 date Time/d 145
BE27T5 hostmame/d| 146
BE27TI6 os version/Zdlo 146
bE27T7 architecture/d 147
2718 shell/2. shell/1. shell/Q o oo i i i i ittt 147
b.27.19 system/2, system/d] e e e e e e e e e 148
B.27.20 spawn/3. spawn/2o 148

B.272T popen/3 e e e 149

6 CONTENTS
B2722 exec/5.exec/4 149
B2ZT23Wait7d o o o e e e e e e e e e e 150
B.27.24 prolog pid/q e e e e e e 150
B-27.25 send_signal/J Lo 151
B.2726 sTeep/do e e e 151
B2727 seTect78 151

0.28 Sockets mmput/output] L. e e e e e e e e 152
b2x 1 Introductionl L L L e e e e e e e e e e e e e e e e 152
BE28 2 socket7A 153
bE283 socket cTose/d 153
bE28 4 "socket bind/7d 154
bZ285 “socket conmect/4o 154
BE286 socket Tisten/d e e e 155
b.28.7 socket_accept/4, socket_accept/3o 155
bE28 8 hostname address/2o 156

b-29 Linedit managemenf]o Lo 157
b.29.T get_Tinedit_prompt/d] e 157
b.29.2 set_linedit prompt/1] e 157
b.29.3 add Iinedit _completion/1 157
B-29.4 find Iinedit_completion/2 158

[[_Finite domain solver and built-in predicateg 159

LT Intraduction . . . 0 0 L L e 159
[[11 Einife Domain variabled e 159

[[.Z__FD variable parameferd e e e 160
2.1 fdmax_integer/T. e e 160
(22 fd vectormax/d e e 160
[L2Z3 fd set vectormax/d 161

[Tnifialvalne consfrainfd L 161
3T fd domain/3. fd domain bool/T].o 161
(32 fd domain/d 162

[[4 Typetesting e 162
(41 fd var/1, non fd var/1I, generic_var/1, non genericvar/1 162

A FD variable informafiod e 163
(5T fd min/2, fd max/2, fd size/2. fd dom/9 163
[[.5.2 fd has_extra_cstr/1, fd has_vector/I, fdusevector/d1. 164

o Armfthmefic constrainfd L. e e 164
[[.6.1 FD arithmefic expressiond e e 164
1(.6.2 Partial AC: (#=) /2 - constraint equal, (#\=)/2 - constraint not equal |

| (#<) /2 - constraint less than, (#=<)/2 - constraint less than or equal |

I (#>) /2 - constraint_greafer than, (#>=)/2 - constraint greater than or equal . . . 165
1(.6.0 Full AC: (#=#) /2 - constraint equal, (#\=#)/2 - constraint not equal, |

| (#<#) /2 - constraint less than, (#=<#)/2 - constraint less than or equal, |

[5#) /2 - constraint greafer than, (#>=#)/2 - constraint greafer than or equal . . 166
(6.4 fd prime/I, fdnot prime/d. 167

[[7—Boolean and reified constrainfd e 167
[T 1T Boolean FD €XPressiong v v v v v v v v e e e e e e e e e e e e e e 167
(.2 (#\) /1 - constraint NO'T, (#<=>) /2 - constraint equivalent, |

[(#\<=>) /2 - constraint different. (##) /2 - constraint XOR. |

| (#==>) /2 - constraint 1mply, (#\==>)/2 - constraint not 1mply. |

| (#/\) /2 - constraint AND, (#\/\)/2 - constramt NAND |

[(#\/) /2 - constraint OR, (#\\/) /2 - constraint NOR]. 168
(..o fd_cardinality/2, fd_cardinality/3, fd_at_least_one/1, fd_at_most_one/1, |

I fd only one/q. L e e e 169

[.8 Symbolic constraintd e 170
8T fd alTl different/7d 170

CONTENTS 7
83 FdeTement var73 0 i i i 171
[[.8.4 fd atmost/3, fd_atleast/3. fd exactly/3 171
(.85 fd relation/2. fd relationc/3o 172

[[.9 Labeling constrainfd e 173
.91 fd_Tabeling/2, fd_Tabeling/1, fd_labelingff/1 173

[[-I0 Optimizafion constrainfdo 174
(. 10.T fdminimize/2, fd maximize/d o v v v v i e e e e e e e e 174

B Inferfacing Prolog and O 177
BI Calling CTirom Prolog o e 177
[INTroduCtlonl . . . L L L L o e 177
BI.2 foreign/2 directivd 177
RT3 The CTuncfionl 178
B.I4 Inpuf argumenfd. e e e e e 179
B.I5 Ouftputargumentd. e 179
B.1.6 Input/output argumenty 179
B.I.7 Writing non-deferministic Ccoddo 180
B.I.8 Example: input and oufput argumentd, 180
B-I.9 Example: non-deferministiccodd 181
B.1.10 Example: mput/output argumentd 183

.2 _Manipulating Prolog Termg o 0 i e e e e e e e e e e e e e e 184
21 INTroductlonl L oL L o e 184
BZZ2 Managing Prologatomd 184
B.2.3 Reading Prolog fermg e e 185
B.Z24 Unifying Prolog Termg e e e e 186
BZ.5 Creafing Prolog Termg o o v v i e e e e e e e e e e 187
B.2.6 Testing the tvpe of Prolog termd 188
B.2.7 Comparing Prolog fermd 189
B.2.8 Copying Prolog fermd e 189
B.2.9 Comparing and evaluating arithmefic expressiond 189

B3 Raising Prolog €ITOr v v v v e e e e e e e e e e e e e e e e 190
BT Managing the error confexf. oL Lo 190
R32 Instantiation errol oL L L L L L L o e e e e e e e e e e e e e e e e e e e 190
B33 TVDE Errol] o e e e e e e e e e e e 190
R34 Domain erral e e e e e e e e e e e e e e e e e e 191
B35 Fxisfenceerrad L L e e e e e e e e e 191
B30 Permission erroll e 191

B 3.7 Representalion erronlo e e e e e e e 191
RIR Evaluafionerrod L Lo e e e 191
B39 Besource errarl L L e e e e e e e e e e e 192

B3 I0 _Svnfax €rro1] e e e e e e e e e e e e e e e e e 192

B3 IT Svstem erron] o o e e e e e e e e e e e e e e e e e e e 192

B4 Calling Prolog from O 193
x4 INTroduClionl L oL L o o e 193
B.4.2 Example: my_call/T-acall/Iclond. 194
B.4.3 Example: recovering the [ist of all operaftord 195

B:5 Defininga new Cmain() funcfiod L L. 196
B5d FExample: asking for ancestord L o Lo 197
[Referenced 201
[Index 203

CONTENTS

CONTENTS 9

Acknowledgements

I would like to thank the department of computing sciencef] at the university of Paris 1 for allowing me
the time and freedom necessary to achieve this project.

I am grateful to the members of the Loco projectf] at INRIA Rocquencourtf] for their encouragement.
Their involvement in this work led to useful feedback and exchange.

I would particularly like to thank Jonathan Hodgsonf] for the time and effort he put into the proofreading
of this manual. His suggestions, both regarding ISO technical aspects as well as the language in which it
was expressed, proved invaluable.

The on-line HTML version of this document was created using HEVEAF developed by Luc Maranget who
kindly devoted so much of his time extending the capabilities of HEVEA in order to handle such a sizeable
manual.

Jean-Christophe Aude kindly improved the visual aspect of both the illustrations and the GNU Prolog
web pages.

Thanks to Richard A. O’Keefe for his advice regarding the implementation of some Prolog built-in
predicates and for suggesting me the in-place installation feature.

Many thanks to the following contributors:
e Clive Coxf] and Edmund Grimley Evansf] for their port to ix86/SCO.
e Nicolas Ollingerf] to for his port to ix86/FreeBSD.
e Brook Milligan[Y for his port to ix86/NetBSD and for general configuration improvements.
e Andreas Stolcke[] for his port to ix86/Solaris.

Many thanks to all those people at GNU[F who helped me to finalize the GNU Prolog project.

Finally, I would like to thank everybody who tested preliminary releases and helped me to put the
finishing touches to this system.

2http://panoramix.univ-parisi.fr/CRINFO/
3http://loco.inria.fr/
4http://www.inria.fr/Unites/ROCQUENCOURT-eng.html
Shttp://www.sju.edu/~ jhodgson
Shttp://pauillac.inria.fr/~maranget/hevea/
7clive@laluna.demon.co.uk
8http://www.rano.org/
9nollinge@ens—lyon.fr

10brook@nmsu. edu
Mhttp://www.speech.sri.com/people/stolcke/
2http://www.gnu.org

10

CONTENTS

11

1 Introduction

GNU Prolog is a free Prolog compiler with constraint solving over finite domains developed by Daniel
DiazZ[™. For recent information about GNU Prolog please consult the GNU Prolog pagef™.

GNU Prolog is a Prolog compiler based on the Warren Abstract Machine (WAM) [R, @]. It first compiles
a Prolog program to a WAM file which is then translated to a low-level machine independent language
called mini-assembly specifically designed for GNU Prolog. The resulting file is then translated to the
assembly language of the target machine (from which an object is obtained). This allows GNU Prolog
to produce a native stand alone executable from a Prolog source (similarly to what does a C compiler
from a C program). The main advantage of this compilation scheme is to produce native code and to be
fast. Another interesting feature is that executables are small. Indeed, the code of most unused built-in
predicates is not included in the executables at link-time.

A lot of work has been devoted to the ISO compatibility. Indeed, GNU Prolog is very close to the ISO
standard for Prologf™ [5].

GNU Prolog also offers various extensions very useful in practice (global variables, OS interface, sock-
ets,...). In particular, GNU Prolog contains an efficient constraint solver over Finite Domains (FD). This
opens contraint logic pogramming to the user combining the power of constraint programming to the
declarativity of logic programming. The key feature of the GNU Prolog solver is the use of a single (low-
level) primitive to define all (high-level) FD constraints. There are many advantages of this approach:
constraints can be compiled, the user can define his own constraints (in terms of the primitive), the solver
is open and extensible (as opposed to black-box solvers like CHIP),. .. Moreover, the GNU Prolog solver
is rather efficient, often more than commercial solvers.

GNU Prolog is inspired from two systems developed by the same author:

e wamcc: a Prolog to C compiler [3]. the key point of wamcc was its ability to produce stand alone
executables using an original compilation scheme: the translation of Prolog to C via the WAM.
Its drawback was the time needed by gcc to compile the produced sources. GNU Prolog can also
produce stand alone executables but using a faster compilation scheme.

e clp(FD): a constraint programming language over FD [d]. Tts key feature was the use of a single
primitive to define FD constraints. GNU Prolog is based on the same idea but offers an extended
constraint definition language. In comparison to c1lp(FD), GNU Prolog offers new predefined con-
straints, new predefined heuristics, reified constraints,. ..

Here are some features of GNU Prolog:

e Prolog system:
— conforms to the ISO standard for Prolog (floating point numbers, streams, dynamic code,. ..).

— a lot of extensions: global variables, definite clause grammars (DCG), sockets interface, oper-
ating system interface,. . .

more than 300 Prolog built-in predicates.

Prolog debugger and a low-level WAM debugger.
— line editing facility under the interactive interpreter with completion on atoms.
— powerful bidirectional interface between Prolog and C.

e Compiler:
— native-code compiler producing stand alone executables.

— simple command-line compiler accepting a wide variety of files: Prolog files, C files, WAM
files,. ..

Bhttp://pauillac.inria.fr/"~diaz
Mhttp://www.gnu.org/software/prolog
Bhttp://www.logic-programming.org/prolog_std.html

12

1 INTRODUCTION

direct generation of assembly code 15 times faster than wamcc + gcc.
most of unused built-in predicates are not linked (to reduce the size of the executables).
compiled predicates (native-code) as fast as wamcmcc on average.

consulted predicates (byte-code) 5 times faster than wamcc.

o Constraint solver:

FD variables well integrated into the Prolog environment (full compatibility with Prolog vari-
ables and integers). No need for explicit FD declarations.

very efficient FD solver (comparable to commercial solvers).
high-level constraints can be described in terms of simple primitives.

a lot of predefined constraints: arithmetic constraints, boolean constraints, symbolic con-
straints, reified constraints,. . .

several predefined enumeration heuristics.
the user can define his own new constraints.

more than 50 FD built-in constraints/predicates.

13

2 Using GNU Prolog

2.1 Introduction

GNU Prolog offers two ways to execute a Prolog program:
e interpreting it using the GNU Prolog interactive interpreter.
e compiling it to a (machine-dependent) executable using the GNU Prolog native-code compiler.

Running a program under the interactive interpreter allows the user to list it and to make full use of the
debugger on it (section B, page B9). Compiling a program to native code makes it possible to obtain a
stand alone executable, with a reduced size and optimized for speed. Running a Prolog program compiled
to native-code is around 3-5 times faster than running it under the interpreter. However, it is not possible
to make full use of the debugger on a program compiled to native-code. Nor is it possible to list the
program. In general, it is preferable to run a program under the interpreter for debugging and then
use the native-code compiler to produce an autonomous executable. It is also possible to combine these
two modes by producing an executable that contains some parts of the program (e.g. already debugged
predicates whose execution-time speed is crucial) and interpreting the other parts under this executable.
In that case, the executable has the same facilities as the GNU Prolog interpreter but also integrates
the native-code predicates. This way to define a new enriched interpreter is detailed later (section B-4.5,

page 23).

2.2 The GNU Prolog interactive interpreter
2.2.1 Starting/exiting the interactive interpreter

GNU Prolog offers a classical Prolog interactive interpreter also called top-level. It allows the user to
execute queries, to consult Prolog programs, to list them, to execute them and to debug them. The
top-level can be invoked using the following command:

% gprolog (the % symbol is the operating system shell prompt)

The top-level invocation does not need any supplemental line-command option. When present these
options can be retrieved using argument _value/2 (section [.27.4, page [39) or argument_list/1 (sec-
tion B.27.9, page [39). However, the --verbose and --help options are recognized for compatibility
purpose with other GNU programs.

To quit the top-level type the end-of-file key sequence (Ct1-D) or its term representation: end of file.
It is also possible to use the built-in predicate halt/0 (section [.18.1, page [[11]).

2.2.2 The interactive interpreter read-execute-write loop

The GNU Prolog top-level is built on a classical read-execute-write loop that also allows for re-executions
(when the query is not deterministic) as follows:

e display the prompt, i.e. ’| ?-".
e read a query (i.e. a goal).
e execute the query.

e in case of success display the values of the variables of the query.

14 2 USING GNU PROLOG

e if there are remaining alternatives (i.e. the query is not deterministic), display a ? and ask the user
who can use one of the following commands: RETURN to stop the execution, ; to compute the next
solution or a to compute all remaining solution.

Here is an example of execution of a query (“find the lists X and Y such that the concatenation of X and
Y is [a,b]”):

| ?- append(X,Y,[a,b,c]).

X =1

Y = [a,b,c] 7 (here the user presses ; to compute another solution)

X = [al

Y = [b,c] 7 (here the user presses a to compute all remaining solutions)

X = [a,b]

Y = [c] (here the user is not asked and the next solution is computed)
X = [a,b,c]

Y =[] (here the user is not asked and the next solution is computed)
no (no more solution)

In some cases the top-level can detect that the current solution is the last one (no more alternatives
remaining). In such a case it does not display the ? symbol (and does not ask the user). Example:

| 7= (X=1 ; X=2).

X=17 (here the user presses ; to compute another solution)
X=2 (here the user is not prompted since there are no more alternatives)
yes

The user can stop the execution even if there are more alternatives by typing RETURN.

| 7- (X=1 ; X=2).
X=17 (here the user presses RETURN to stop the execution)

yes

The top-level tries to display the values of the variables of the query in a readable manner. For instance,
when a variable is bound to a query variable, the name of this variable appears. When a variable is a
singleton an underscore symbol _ is displayed (- is a generic name for a singleton variable, it is also called
an anonymous variable). Other variables are bound to new brand variable names. When a query variable
name X appears as the value of another query variable Y it is because X is itself not instantiated otherwise
the value of X is displayed. In such a case, nothing is output for X itself (since it is a variable). Example:

| 7- X=f(A,B,_,A), A=k.

A
X

k (the value of A is displayed also in £/3 for X)
f(k,B,_,k) (since B is a variable which is also a part of X, B is not displayed)

| ?- functor(T,f,3), arg(1,T,X), arg(3,T,X).

—
]

£f(X,_,X) (the 1% and 3"¢ args are equal to X, the 2"? is an anonymous variable)

| ?- read_from_atom(’k(X,Y,X).’,T).

]
]

k(A,_,A) (the 1°¢ and 37¢ args are unified, a new variable name A is introduced)

2.2 The GNU Prolog interactive interpreter 15

The top-level uses variable binding predicates (section .3, page BY). To display the value of a variable,
the top-level calls write_term/3 with the following option list: [quoted(true) ,numbervars(false),
namevars (true)] (section [.14.§, page P4). A term of the form ’$VARNAME’ (Name) where Name is an
atom is displayed as a variable name while a term of the form >$VAR’ (N) where N is an integer is displayed
as a normal compound term (such a term could be output as a variable name by write_term/3). Example:

| 7- X="$VARNAME’ (°Y’), Y="$VAR’(1).

X
Y

Y (the term ’$VARNAME’ (°Y?) is displayed as Y)
*$VAR’ (1) (the term *$VAR’ (1) is displayed as is)

| 7- X=Y, Y="$VAR’(1).

X = ’$VAR’ (1)
Y = "$VAR’ (1)

In the first example, X is explicitly bound to >$VARNAME’ (°Y’) by the query so the top-level displays Y
as the value of X. Y is unified with >$VAR’ (1) so the top-level displays it as a normal compound term.
It should be clear that X is not bound to Y (whereas it is in the second query). This behavior should be
kept in mind when doing variable binding operations.

Finally, the top-level computes the user-time (section p.24.9, page [[33) taken by a query and displays it
when it is significant. Example:

| 7- retractall(p(.)), assertz(p(0)),

repeat,
retract(p(X)),
Y is X+1,
assertz(p(Y)),
X=1000, !.
X = 1000
Y = 1001
(180 ms) yes (the query took 180ms of user time)

2.2.3 Consulting a Prolog program

The top-level allows the user to consult Prolog source files. Consulted predicates can be listed, executed
and debugged (while predicates compiled to native-code cannot). For more information about the differ-
ence between a native-code predicate and a consulted predicate refer to the introduction of this section
(section R.1|, page [[J) and to the part devoted to the compiler (section B-4.1], page [9).

To consult a program use the built-in predicate consult/1 (section p.23.1], page [33). The argument
of this predicate is a Prolog file name or user to specify the terminal. This allows the user to directly
input the predicates from the terminal. In that case the input shall be terminated by the end-of-file key
sequence (Ct1-D) or its term representation: end of file. A shorthand for consult(FILE) is [FILE].
Example:

16 2 USING GNU PROLOG

| ?- [user].
{compiling user for byte code...}
even(0) .
even(s(s(X))):-
even(X) .
(here the user presses Ct1-D to end the input)
{user compiled, 3 lines read - 350 bytes written, 1180 ms}

| 7- even(X).

X=07 (here the user presses ; to compute another solution)
X =s(s(0)) 7 (here the user presses ; to compute another solution)
X = s(s(s(s(0)))) 7 (here the user presses RETURN to stop the execution)

yes
| 7- listing.

even(0).
even(s(s(h))) :-
even(A).

When consult/1 (section B.23.1], page [[32) is invoked on a Prolog file it first runs the GNU Prolog
compiler (section P4, page [J) as a child process to generate a temporary WAM file for byte-code. If
the compilation fails a message is displayed and nothing is loaded. If the compilation succeeds, the
produced file is loaded into memory using load/1 (section B.23.3, page [[33). Namely, the byte-code of
each predicate is loaded. When a predicate P is loaded if there is a previous definition for P it is removed
(i.e. all clauses defining P are erased). We say that P is redefined. Note that only consulted predicates
can be redefined. If P is a native-code predicate, trying to redefine it will produce an error at load-time:
the predicate redefinition will be ignored and the following message displayed:

native code procedure P cannot be redefined

Finally, an existing predicate will not be removed if it is not re-loaded. This means that if a predicate P
is loaded when consulting the file F, and if later the definition of P is removed from the file F, consulting
F again will not remove the previously loaded definition of P from the memory.

Consulted predicates can be debugged using the Prolog debugger. Use the debugger predicate trace/0
or debug/0 (section B3, page Bl)) to activate the debugger.

2.2.4 Interrupting a query

Under the top-level it is possible to interrupt the execution of a query by typing the interruption key
(Ct1-C). This can be used to abort a query, to stop an infinite loop, to activate the debugger,... When an
interruption occurs the top-level displays the following message: Prolog interruption (h for help) 7
The user can then type one of the following commands:

| Command \ Name | Description |

a abort abort the current execution. Same as abort/0 (section [.18.1|, page)
e exit quit the current Prolog process. Same as halt/0 (Sectio%ﬁmge%r
b break | invoke a recursive top-level. Same as break/0 (section p.18.1], page [[11])
c continue | resume the execution
t trace start the debugger using trace/0 (section B.3.1|, page B1l)
d debug start the debugger using debug/0 (section %7 page Bl)
hor? help display a summary of available commands

2.2 The GNU Prolog interactive interpreter 17

2.2.5 The line editor

The line editor (linedit) allows the user to build/update the current input line using a variety of
commands. This facility is available if the 1inedit part of GNU Prolog has been installed. linedit is
implicitly called by any built-in predicate reading from a terminal (e.g. get_char/1, read/1,...). This
is the case when the top-level reads a query.

Bindings: each command of linedit is activated using a key. For some commands another key is also
available to invoke the command (on some terminals this other key may not work properly while the
primary key always works). Here is the list of available commands:

| Key | Alternate key | Description |
Ctl-B — go to the previous character
Ctl-F — go to the next character
Esc-B Ctl-«— go to the previous word
Esc-F Ctl-— go to the next word
Ctl-A Home go to the beginning of the line
Ctl-E End go to the end of the line
Ctl-H Backspace delete the previous character
Ctl-D Delete delete the current character
Ctl-U Ctl-Home delete from beginning of the line to the current character
Ctl-K Ctl-End delete from the current character to the end of the line
Esc-L lower case the next word
Esc-U upper case the next word
Esc-C capitalize the next word
Ctl-T exchange last two characters
Ctl-v Insert switch on/off the insert/replace mode
Ctl-I Tab complete word (twice displays all possible completions)
Ctl-space mark beginning of the selection
Esc-W copy (from the begin selection mark to the current character)
Ctl-w cut (from the begin selection mark to the current character)
Ctl-Y paste
Ctl-P T recall previous history line
Ctl-N 1 recall next history line
Esc-P recall previous history line beginning with the current prefix
Esc-N recall next history line beginning with the current prefix
Esc-< Page Up recall first history line
Esc—> Page Down recall last history line
Ctl-C generate an interrupt signal (section P.2.4)) page @)
Ctl-D generate an end-of-file character (at the begin of the line)
RETURN validate a line
Esc-7 display a summary of available commands

History: when a line is entered (i.e. terminated by RETURN), linedit records it in an internal list called
history. It is later possible to recall history lines using appropriate commands (e.g. Ct1-P recall the last
entered line) and to modify them as needed. It is also possible to recall a history line beginning with a
given prefix. For instance to recall the previous line beginning with write simply type write followed
by Esc-P. Another Esc-P will recall an earlier line beginning with write,...

Completion: another important feature of 1inedit is its completion facility. Indeed, linedit maintains
a list of known words and uses it to complete the prefix of a word. Initially this list contains all predefined
atoms and the atoms corresponding to available predicates. This list is dynamically updated when a new
atom appears in the system (whether read at the top-level, created with a built-in predicate, associated
to a new consulted predicate,...). When the completion key (Tab) is pressed linedit acts as follows:

18 2 USING GNU PROLOG

e use the current word as a prefix.

e collect all words of the list that begin with this prefix.

e complete the current word with the longest common part of all matching words.

e if more than one word matches emit a beep (a second Tab will display all possibilities).
Example:

here the user presses Tab to complete the word)

linedit completes argu with argument_ and emits a beep)
the user presses again Tab to see all possible completions)
linedit shows 3 possible completions)

| ?7- argu (

| ?- argument_ (
(

argument_counter (

argument_list

argument_value

| ?- argument_ (linedit redisplays the input line)

| ?- argument_c (to select argument_counter the user presses ¢ and Tab)
| ?- argument_counter (linedit completes with argument_counter)

Finally, 1inedit allows the user to check that (square/curly) brackets are well balanced. For this, when
a close bracket symbol, i.e.),] or }, is typed, linedit determines the associated open bracket, i.e. (, [
or {, and temporarily repositions the cursor on it to show the match.

2.3 Adjusting the size of Prolog stacks

GNU Prolog uses several stacks to execute a Prolog program. Each stack has a static size and cannot be
dynamically increased during the execution. For each stack there is a default size but the user can define
a new size by setting an environment variable. When a GNU Prolog program is run it first consults these
variables and if they are not defined uses the default sizes. The following table presents each stack of
GNU Prolog with its default size and the name of its associated environment variable:

Stack Default | Environment | Description

name | size (Kb) variable

local 2048 LOCALSZ control stack (environments and choice-points)
global 4096 GLOBALSZ heap (compound terms)

trail 2048 TRAILSZ conditional bindings (bindings to undo at backtracking)
cstr 2048 CSTRSZ finite domain constraint stack (FD variables and constraints)

If the size of a stack is too small an overflow will occur during the execution. In that case GNU Prolog
emits the following error message before stopping:

S stack overflow (size: N Kb, environment variable used: E)

where S is the name of the stack, N is the current stack size in Kb and E the name of the associated
environment variable. When such a message occurs it is possible to (re)define the variable E with the
new size. For instance to allocate 4096 Kb to the local stack under a Unix shell use:

LOCALSZ=4096; export LOCALS (under sh or bash)
setenv LOCALSZ 4096 (under csh or tcsh)

This method allows the user to adjust the size of Prolog stacks. However, in some cases it is preferable
not to allow the user to modify these sizes. For instance, when providing a stand alone executable whose
behavior should be independent of the environment in which it is run. In that case the program should
not consult environment variables and the programmer should be able to define new default stack sizes.
The GNU Prolog compiler offers this facilities via several command-line options such as --local-size

or ——fixed-sizes (section P.4.3, page BT)).

2.4 The GNU Prolog compiler 19

Finally note that GNU Prolog stacks are virtually allocated (i.e. use virtual memory). This means that
a physical memory page is allocated only when needed (i.e. when an attempt to read/write it occurs).
Thus it is possible to define very large stacks. At the execution, only the needed amount of space will be
physically allocated.

2.4 The GNU Prolog compiler
2.4.1 Different kinds of codes

One of the main advantages of GNU Prolog is its ability to produce stand alone executables. A Prolog
program can be compiled to native code to give rise to a machine-dependent executable using the GNU
Prolog compiler. However native-code predicates cannot be listed nor fully debugged. So there is an
alternative to native-code compilation: byte-code compilation. By default the GNU Prolog compiler
produces native-code but via a command-line option it can produce a file ready for byte-code loading.
This is exactly what consult/1 does as was explained above (section B.2.3, page [). GNU Prolog also
manages interpreted code using a Prolog interpreter written in Prolog. Obviously interpreted code is
slower than byte-code but does not require the invocation of the GNU Prolog compiler. This interpreter
is used each time a meta-call is needed as by call/1 (section p.2.9, page 7). This also the case of
dynamically asserted clauses. The following table summarizes these three kinds of codes:

| Type | Speed | Debug ? | For what \
interpreted-code | slow yes meta-call and dynamically asserted clauses
byte-code medium yes consulted predicates
native-code fast no compiled predicates

2.4.2 Compilation scheme

Native-code compilation: a Prolog source is compiled in several stages to produce an object file that
is linked to the GNU Prolog libraries to produce an executable. The Prolog source is first compiled to
obtain a WAM [g] file. For a detailed study of the WAM the interested reader can refer to “Warren’s Ab-
stract Machine: A Tutorial Reconstruction”[¥ [I]. The WAM file is translated to a machine-independent
language specifically designed for GNU Prolog. This language is close to a (universal) assembly language
and is based on a very reduced instruction set. For this reason this language is called mini-assembly
(MA). The mini-assembly file is then mapped to the assembly language of the target machine. This
assembly file is assembled to give rise to an object file which is then linked with the GNU Prolog libraries
to provide an executable. The compiler also takes into account Finite Domain constraint definition files.
It translates them to C and invoke the C compiler to obtain object files. The following figure presents
this compilation scheme:

6http://www.isg.sfu.ca/ hak/documents/wam.html

20

2 USING GNU PROLOG

Prolog
files

pl 2wam

WAM
files

wankma

mini-assembly
files

ma2asm

"

FD constraint
definition files

assembly
files

¢

fd2c

assenbl er

'

Cfiles

object
files

C conpi l er

1@ - =

l'i nker

executable

I

Prolog/FD libraries
and user libraries

2.4 The GNU Prolog compiler 21

Obviously all intermediate stages are hidden to the user who simply invokes the compiler on his Prolog
file(s) (plus other files: C,...) and obtains an executable. However, it is also possible to stop the
compiler at any given stage. This can be useful, for instance, to see the WAM code produced (perhaps
when learning the WAM). Finally it is possible to give any kind of file to the compiler which will insert
it in the compilation chain at the stage corresponding to its type. The type of a file is determined using
the suffix of its file name. The following table presents all recognized types/suffixes:

| Suffix of the file ‘ Type of the file | Handled by: |
.pl, .pro Prolog source file pl2wam
.wam WAM source file wam2ma
.ma Mini-assembly source file ma2asm
.8 Assembly source file the assembler
.¢c, .C, .CC, .cc, .cxx, .c++, .cpp | C or C++ source file the C compiler
.fd Finite Domain constraint source file | £d2c
any other suffix (.o, .a,...) any other type (object, library,...) | the linker (C linker)

Byte-code compilation: the same compiler can be used to compile a source Prolog file for byte-code.
In that case the Prolog to WAM compiler is invoked using a specific option and produces a WAM for
byte-code source file (suffixed .wbc) that can be later loaded using load/1 (section B.23.2, page [33).
Note that this is exactly what consult/1 (section p.23.1l, page [[39) does as explained above (section .2.3,

page [3).

2.4.3 Using the compiler

The GNU Prolog compiler is a command-line compiler similar in spirit to a Unix C compiler like gcc.
To invoke the compiler use the gplc command as follows:

% gplc [OPTION]... FILE... (the % symbol is the operating system shell prompt)

The arguments of gplc are file names that are dispatched in the compilation scheme depending on the
type determined from their suffix as was explained previously (section P:4.2, page [[J). All object files are
then linked to produce an executable. Note however that GNU Prolog has no module facility (since there
is not yet an ISO reference for Prolog modules) thus a predicate defined in a Prolog file is visible from
any other predicate defined in any other file. GNU Prolog allows the user to split a big Prolog source
into several files but does not offer any way to hide a predicate from others.

The simplest way to obtain an executable from a Prolog source file prog.pl is to use:
% gplc prog.pl

This will produce an native executable called prog which can be executed as follows:
% prog

However, there are several options that can be used to control the compilation:

General options:

22 2 USING GNU PROLOG

-o FILE, --output FILE use FILE as the name of the output file

-W, ~—wam-for-native stop after producing WAM files(s)

-w, ——wam-for-byte-code stop after producing WAM for byte-code file(s) (force ——no-call-c)
-M, --mini-assembly stop after producing mini-assembly files(s)

-S, ——assembly stop after producing assembly files (s)

-F, --fd-to-c stop after producing C files(s) from FD constraint definition file(s)
-c, ——object stop after producing object files(s)

-—temp-dir PATH use PATH as directory for temporary files

--no-del-temp do not delete temporary files

--no-decode-hexa do not decode hexadecimal predicate names

-v, -—verbose print executed commands

-h, --help print a help and exit

--version print version number and exit

Prolog to WAM compiler options:

--pl-state FILE read FILE to set the initial Prolog state
--no-inline do not inline predicates

--no-reorder do not reorder predicate arguments

--no-reg-opt do not optimize registers

--min-reg-opt minimally optimize registers
--no-opt-last-subterm do not optimize last subterm compilation
--fast-math use fast mathematical mode (assume integer arithmetic)
--keep-void-inst keep void WAM instructions in the output file
--no-susp-warn do not show warnings for suspicious predicates
--no-singl-warn do not show warnings for named singleton variables
--no-redef-error no not show errors for built-in predicate redefinitions
--no-call-c do not allow the use of fd_tell, ’$call c’,...
—-—compile-msg print a compile message

--statistics print statistics information

WAM to mini-assembly translator options:

--comment include comments in the output file
Mini-assembly to assembly translator options:

—--comment include comments in the output file
C compiler options:

--c-compiler FILE use FILE as C compiler
-C OPTION pass OPTION to the C compiler

Assembler options:
-A OPTION pass OPTION to the assembler

Linker options:

2.4 The GNU Prolog compiler 23

--local-size N set default local stack size to N Kb

--global-size N set default global stack size to N Kb

-—trail-size N set default trail stack size to ¥ Kb

--cstr-size N set default constraint stack size to N Kb

--fixed-sizes do not consult environment variables at run-time (use default sizes)
--no-top-level do not link the top-level (force --no-debugger)

--no-debugger do not link the Prolog/WAM debugger

--min-pl-bips link only used Prolog built-in predicates

--min-fd-bips link only used FD solver built-in predicates

--min-bips shorthand for: --no-top-level --min-pl-bips —-min-fd-bips
--min-size shorthand for: --min-bips --strip

--no-fd-1lib do not look for the FD library (maintenance only)

-s, —-strip strip the executable

-L OPTION Pass OPTION to the linker

It is possible to only give the prefix of an option if there is no ambiguity.

The name of the output file is controlled via the —o FILE option. If present the output file produced will
be named FILE. If not specified, the output file name depends on the last stage reached by the compiler.
If the link is not done the output file name(s) is the input file name(s) with the suffix associated to the
last stage. If the link is done, the name of the executable is the name (without suffix) of the first file
name encountered in the command-line. Note that if the link is not done -o should be used if only one
file name is given as argument.

By default the compiler runs in the native-code compilation scheme. To generate a WAM file for byte-code
use the -—wam-for-byte-code option. The resulting file can then be loaded using load/1 (section [.23.2,

page [33).

To execute the Prolog to WAM compiler in a given read environment (operator definitions, character
conversion table,...) use -—pl-state FILE. The state file should be produced by write pl_state file/1

(section B.22.5, page [31]).

By default the Prolog to WAM compiler inlines calls to some deterministic built-in predicates (e.g. arg/3
and functor/3). Namely a call to such a predicate will not yield a classical predicate call but a simple
C function call (which is obviously faster). It is possible to avoid this using -—-no-inline.

Another optimization performed by the Prolog to WAM compiler is unification reordering. The arguments
of a predicate are reordered to optimize unification. This can be deactivated using --no-reorder. The
compiler also optimizes the unification/loading of nested compound terms. More precisely, the compiler
emits optimized instructions when the last subterm of a compound term is itself a compound term (e.g.
lists). This can be deactivated using --no-opt-last-subterm.

By default the Prolog to WAM compiler fully optimizes the allocation of registers to decrease both the
number of instruction produced and the number of used registers. A good allocation will generate many
void instructions that are removed from the produced file except if --keep-void-inst is specified. To
prevent any optimization use --no-reg-opt while —-min-reg-opt forces the compiler to only perform
simple register optimizations.

The Prolog to WAM compiler emits an error when a control construct or a built-in predicate is redefined.
This can be avoided using --no-redef-error. The compiler also emits warnings for suspicious predicate
definitions like -/2 since this often corresponds to an earlier syntax error (e.g. - instead of _. This can
be deactivated by specifying —-no-susp-warn. Finally, the compiler warns when a singleton variable has
a name (i.e. not the generic anonymous name _). This can be deactivated specifying --no-singl-warn.

Predicate names are encoded with an hexadecimal representation. This is explained in more detail later
(section P-4.6, page B5). By default the error messages from the linker (e.g. multiple definitions for a given
predicate, reference to an undefined predicate,...) are filtered to replace any hexadecimal representation

24 2 USING GNU PROLOG

by the real predicate name. Specifying the ——no-decode-hexa prevents gplc from filtering linker output
messages and hexadecimal representations are then shown.

When producing an executable it is possible to specify default stack sizes (using --STACK_NAME-size)
and to prevent it from consulting environment variables (using --fixed-sizes) as was explained above
(section B-3, page [[§). By default the produced executable will include the top-level, the Prolog/WAM
debugger and all Prolog and FD built-in predicates. It is possible to avoid linking the top-level (sec-
tion B3, page [[3) by specifying ——no-top-level. In this case, at least one initialization/1 directive
(section p.1.13, page) should be defined. The option --no-debugger does not link the debugger. To in-
clude only used built-in predicates that are actually used the options =-no-pl-bips and/or --no-fd-bips
can be specified. For the smallest executable all these options should be specified. This can be abbre-
viated by using the shorthand option --min-bips. By default, executables are not stripped, i.e. their
symbol table is not removed. This table is only useful for the C debugger (e.g. when interfacing Prolog
and C). To remove the symbol table (and then to reduce the size of the final executable) use --strip.
Finally —-min-size is a shortcut for --min-bips and --strip, i.e. the produced executable is as small
as possible.

Example: compile and link two Prolog sources progl.pl and prog2.pl. The resulting executable will
be named progl (since -o is not specified):

% gplc progl.pl prog2.pl

Example: compile the Prolog file prog.pl to study basic WAM code. The resulting file will be named
prog.wam:

% gplc -W --no-inline --no-reorder --keep-void-inst prog.pl

Example: compile the Prolog file prog.pl and its C interface file utils.c to provide an autonomous
executable called mycommand. The executable is not stripped to allow the use of the C debugger:

% gplc -o mycommand prog.pl utils.c

Example: detail all steps to compile the Prolog file prog.pl (the resulting executable is stripped). All
intermediate files are produced (prog.wam, prog.ma, prog.s, prog.o and the executable prog):

% gplc -W prog.pl

% gplc -M --comment prog.wam
% gplc -S --comment prog.ma
% gplc -c prog.s

% gplc -o prog -s prog.o

2.4.4 Running an executable

In this section we explain what happens when running an executable produced by the GNU Prolog native-
code compiler. The default main function first starts the Prolog engine. This function collects all linked
objects (issued from the compilation of Prolog files) and initializes them. The initialization of a Prolog
object file consists in adding to appropriate tables new atoms, new predicates and executing its system
directives. A system directive is generated by the Prolog to WAM compiler to reflect a (user) directive
executed at compile-time such as op/3 (section p.1.10, page f4). Indeed, when the compiler encounters
such a directive it immediately executes it and also generates a system directive to execute it at the
start of the executable. When all system directives have been executed the Prolog engine executes all
initialization directives defined with initialization/1 (section p.I.13J, page E5). If several initialization
directives appear in the same file they are executed in the order of appearance. If several initialization
directives appear in different files the order in which they are executed is machine-dependant. However,
on most machines the order will be the reverse order in which the associated files have been linked (this
is not true under native win32). When all initialization directives have been executed the default main
function looks for the GNU Prolog top-level. If present (i.e. it has been linked) it is called otherwise the
program simply ends. Note that if the top-level is not linked and if there is no initialization directive the

2.4 The GNU Prolog compiler 25

program is useless since it simply ends without doing any work. The default main function detects such
a behavior and emits a warning message.

Example: compile an empty file prog.pl without linking the top-level and execute it:

% gplc ——no-top-level prog.pl

% prog
Warning: no initial goal executed
use a directive :- initialization(Goal)

or remove the link option --no-top-level (or --min-bips or --min-size)

2.4.5 Generating a new interactive interpreter

In this section we show how to define a new top-level extending the GNU Prolog interactive interpreter
with new predicate definitions. The obtained top-level can then be considered as an enriched version of
the basic GNU Prolog top-level (section -3, page [3). Indeed, each added predicate can be viewed as
a predefined predicate just like any other built-in predicate. This can be achieved by compiling these
predicates and including the top-level at link-time.

The real question is: why would we include some predicates in a new top-level instead of simply consulting
them under the GNU Prolog top-level 7 There are two reasons for this:

e the predicate cannot be consulted. This is the case of a predicate calling foreign code, like a
predicate interfacing with C (section B, page [71) or a predicate defining a new FD constraint.

e the performance of the predicate is crucial. Since it is compiled to native-code such a predicate will
be executed very quickly. Consulting will load it as byte-code. The gain is much more noticeable if
the program is run under the debugger. The included version will not be affected by the debugger
while the consulted version will be several times slower. Obviously, a predicate should be included
in a new top-level only when it is itself debugged since it is difficult to debug native-code.

To define a new top-level simply compile the set of desired predicates and linking them with the GNU
Prolog top-level (this is the default) using gplc (section B-4.3, page BT)).

Example: let us define a new top-level called my_top_level including all predicates defined in prog.pl:
% gplc -o my_top_level prog.pl

By the way, note that if prog.pl is an empty Prolog file the previous command will simply create a new
interactive interpreter similar to the GNU Prolog top-level.

Example: as before where some predicates of prog.pl call C functions defined in utils.c:
% gplc -o my_top_level prog.pl utils.c

In conclusion, defining a particular top-level is nothing else but a particular case of the native-code
compilation. It is simple to do and very useful in practice.

2.4.6 The hexadecimal predicate name encoding

When the GNU Prolog compiler compiles a Prolog source to an object file it has to associate a symbol to
each predicate name. However, the syntax of symbols is restricted to identifiers: string containing only
letters, digits or underscore characters. On the other hand, predicate names (i.e. atoms) can contain
any character with quotes if necessary (e.g. *x+y=z’ is a valid predicate name). The compiler has then
to encode predicate names respecting the syntax of identifiers. To achieve this, GNU Prolog uses an
hexadecimal representation where each predicate name is translated to a symbol beginning with an X
followed by the hexadecimal notation of the code of each character of the name.

26 2 USING GNU PROLOG

Example: ’x+y=z’ will be encoded as X782B793D7A since 78 is the hexadecimal representation of the
code of x, 2B of the code of +, etc.

Since Prolog allows the user to define several predicates with the same name but with a different arity
GNU Prolog encodes predicate indicators (predicate name followed by the arity). The symbol associated
to the predicate name is then followed by an underscore and by the decimal notation of the arity.

Example: ’x+y=z’/3 will be encoded as X782B793D7A_3.

So, from the mini-assembly stage, each predicate indicator is replaced by its hexadecimal encoding. The
knowledge of this encoding is normally not of interest for the user, i.e. the Prolog programmer. For this
reason the GNU Prolog compiler hides this encoding. When an error occurs on a predicate (undefined
predicate, predicate with multiple definitions,. ..) the compiler has to decode the symbol associated to the
predicate indicator. For this gplc filters each message emitted by the linker to locate and decode eventual
predicate indicators. This filtering can be deactivated specifying --no-decode-hexa when invoking gplc

(section P43, page BT)).

This filter is provided as an utility that can be invoked using the hexgplc command as follows:

% hexgplc [OPTION]... FILE... (the % symbol is the operating system shell prompt)
Options:
--encode encoding mode (default mode is decoding)
--relax decode also predicate names (not only predicate indicators)
--printf FORMAT pass encoded/decoded string to C printf (3) with FORMAT
--aux-father decode an auxiliary predicate as its father
--aux-father2 decode an auxiliary predicate as its father + auxiliary number
--cmd-line encode/decode each argument of the command-line
-H same as: ——cmd-line --encode
-P same as: --cmd-line --relax
--help print a help and exit
--version print version number and exit

It is possible to give a prefix of an option if there is no ambiguity.

Without arguments hexgplc runs in decoding mode reading its standard input and decoding each symbol
corresponding to a predicate indicator. To use hexgplc in the encoding mode the -—encode option must
be specified. By default hexgplc only decodes predicate indicators, this can be relaxed using --relax
to also take into account simple predicate names (the arity can be omitted). It is possible to format the
output of an encoded/decoded string using ——printf FORMAT in that case each string S is passed to the
C printf(3) function as printf (FORMAT,S).

Auxiliary predicates are generated by the Prolog to WAM compiler when simplifying some control con-
structs like ’; /2 present in the body of a clause. They are of the form ’>$NAME/ARITY $auxN’ where
NAME /ARITY is the predicate indicator of the simplified (i.e. father) predicate and ¥ is a sequential num-
ber (a predicate can give rise to several auxiliary predicates). It is possible to force hexgplc to decode
an auxiliary predicate as its father predicate indicator using --aux-father or as its father predicate
indicator followed by the sequential number using -—aux-father2.

If no file is specified, hexgplc processes its standard input otherwise each file is treated sequentially.
Specifying the --cmd-line option informs hexgplc that each argument is not a file name but a string
that must be encoded (or decoded). This is useful to encode/decode a particular string. For this reason
the option -H (encode to hexadecimal) and -P (decode to Prolog) are provided as shorthand. Then, to
obtain the hexadecimal representation of a predicate P use:

% hexgplc -H P

Example:

2.4 The GNU Prolog compiler

27

% hexgplc -H ’x+y=z’
X782B793D7A

28

2 USING GNU PROLOG

29

3 Debugging

3.1 Introduction

The GNU Prolog debugger provides information concerning the control flow of the program. The debugger
can be fully used on consulted predicates (i.e. byte-code). For native compiled code only the calls/exits
are traced, no internal behavior is shown. Under the debugger it is possible to exhaustively trace the
execution or to set spy-points to only debug a specific part of the program. Spy-points allow the user to
indicate on which predicates the debugger has to stop to allow the user to interact with it. The debugger
uses the “procedure box control flow model”, also called the Byrd Box model since it is due to Lawrence
Byrd.

3.2 The procedure box model

The procedure box model of Prolog execution provides a simple way to show the control flow. This
model is very popular and has been adopted in many Prolog systems (e.g. SICStus Prolog, Quintus
Prolog,...). A good introduction is the chapter 8 of “Programming in Prolog” of Clocksin & Mellish [7].
The debugger executes a program step by step tracing an invocation to a predicate (call) and the
return from this predicate due to either a success (exit) or a failure (fail). When a failure occurs
the execution backtracks to the last predicate with an alternative clause. The predicate is then re-
invoked (redo). Another source of change of the control flow is due to exceptions. When an exception is
raised from a predicate (exception) by throw/1 (section p.2.4, page 1) the control is given back to the
most recent predicate that has defined a handler to recover this exception using catch/3 (section 5.2.4,
page [[7). The procedure box model shows these different changes in the control flow, as illustrated here:

30

3 DEBUGGING

cal ———

fall «——

predicate

—— exit

e—— redo

exception

3.3 Debugging predicates 31

Each arrow corresponds to a port. An arrow to the box indicates that the control is given to this predicate
while an arrow from the box indicates that the control is given back from the procedure. This model
visualizes the control flow through these five ports and the connections between the boxes associated to
subgoals. Finally, it should be clear that a box is associated to one invocation of a given predicate. In
particular, a recursive predicate will give raise to a box for each invocation of the predicate with different
entries/exits in the control flow. Since this might get confusing for the user, the debugger associates to
each box a unique identifier (i.e. the invocation number).

3.3 Debugging predicates
3.3.1 Running and stopping the debugger

trace/0 activates the debugger. The next invocation of a predicate will be traced.

debug/0 activates the debugger. The next invocation of a predicate on which a spy-point has been set
will be traced.

It is important to understand that the information associated to the control flow is only available when
the debugger is on. For efficiency reasons, when the debugger is off the information concerning the control
flow (i.e. the boxes) is not retained. So, if the debugger is activated in the middle of a computation (by
a call to debug/0 or trace/0 in the program or after the interrupt key sequence (Ct1-C) by choosing
trace or debug), information prior to this point is not available.

debugging/0: prints onto the terminal information about the current debugging state (whether the
debugger is switched on, what are the leashed ports, spy-points defined,. ..).

notrace/0 or nodebug/0 switches the debugger off.

wam_debug/0 invokes the sub-debugger devoted to the WAM data structures (section B.G, page B4). It
can be also invoked using the W debugger command (section B-5, page B2).

3.3.2 Leashing ports

leash(Ports) requests the debugger to prompt the user, as he creeps through the program, for every
port defined in the Ports list. Each element of Ports is an atom in call, exit, redo, fail, exception.
Ports can also be an atom defining a shorthand:

e full: equivalent to [call, exit, redo, fail, exception]
e half: equivalent to [call, redo]

e loose: equivalent to [calll

e none: equivalent to []

e tight: equivalent to [call, redo, fail, exception]

When an unleashed port is encountered the debugger continues to show the associated goal but does not
stop the execution to prompt the user.

3.3.3 Spy-points

When dealing with big sources it is not very practical to creep through the entire program. It is preferable
to define a set of spy-points on interesting predicates to be prompted when the debugger reaches one of

32 3 DEBUGGING

these predicates. Spy-points can be added either using spy/1 (or spypoint_condition/3) or dynamically
when prompted by the debugger using the + (or *) debugger command (section B.5, page BJ). The current
mode of leashing does not affect spy-points in the sense that user interaction is requested on every port.

spy (PredSpec) sets a spy-point on all the predicates given by PredSpec. PredSpec defines one or several
predicates and has one of the following forms:

e [PredSpecl, PredSpec2,...]: set a spy-point for each element of the list.

e Name: set a spy-point for any predicate whose name is Name (whatever the arity).

e Name/Arity: set a spy-point for the predicate whose name is Name and arity is Arity.

e Name/A1-A2: set a spy-point for the each predicate whose name is Name and arity is between A1l
and A2.

It is not possible to set a spy-point on an undefined predicate.

The following predicate is used to remove one or several spy-points:
nospy (PredSpec) removes the spy-points from the specified predicates.
nospyall/0 removes all spy-points:

It is also possible to define conditional spy-points.

spypoint_condition(Goal, Port, Test) sets a conditional spy-point on the predicate for Goal. When
the debugger reaches a conditional spy-point it only shows the associated goal if the following conditions
are verified:

e the actual goal unifies with Goal.
e the actual port unifies with Port.

e the Prolog goal Test succeeds.

3.4 Debugging messages

We here described which information is displayed by the debugger when it shows a goal. The basic format
is as follows:

S N M Port: Goal 7

S is a spy-point indicator: if there is a spy-point on the current goal the + symbol is displayed else a space
is displayed. N is the invocation number. This unique number can be used to correlate the trace messages
for the various ports, since it is unique for every invocation. M is an index number which represents the
number of direct ancestors of the goal (i.e. the current depth of the goal). Port specifies the particular
port (call, exit, fail, redo, exception). Goal is the current goal (it is then possible to inspect its
current instantiation) which is displayed using write_term/3 with quoted(true) and max_depth(D)
options (section [.14.6, page P4). Initially D (the print depth) is set to 10 but can be redefined using the
< debugger command (section B.j, page B2). The ? symbol is displayed when the debugger is waiting
a command from the user. (i.e. Port is a leashed port). If the port is unleashed, this symbol is not
displayed and the debugger continues the execution displaying the next goal.

3.5 Debugger commands

When the debugger reaches a leashed port it shows the current goal followed by the ? symbol. At this
point there are many commands available. Typing RETURN will creep into the program. Continuing to

3.5 Debugger commands

33

creep will show all the control flow. The debugger shows every port for every predicate encountered
during the execution. It is possible to select the ports at which the debugger will prompt the user using
the built-in predicate leash/1 (section B.3.3, page Bll). Each command is only one character long:

| Command ‘ Name | Description
RET or ¢ creep single-step to the next port

1 leap continue the execution only stopping when a goal with a spy-point
is reached

s skip skip over the entire execution of the current goal. No message will
be shown until control returns

G go to ask for an invocation number and continue the execution until a port
is reached for that invocation number

r retry try to restart the invocation of the current goal by failing until reach-
ing the invocation of the goal. The state of execution is the same
as when the goal was initially invoked (except when using side-effect
predicates)

f fail force the current goal to fail immediately

W write show the current goal using write/2 (section (.14.0, page 94)

d display show the current goal using display/2 (section 5.14.6, page E%)

P print show the current goal using print/2 (section .14.4, page @)

e exception show the pending exception. Only applicable to an exception port

g ancestors show the list of ancestors of the current goal

A alternatives show the list of ancestors of the current goal combined with choice-
points

u unify ask for a term and unify the current goal with this term. This is
convenient for getting a specific solution. Only available at a call
port

father file show the Prolog file name and the line number where the current
predicate is defined

n no debug switch the debugger off. Same as nodebug/0 (section B.3.1, page @)

= debugging show debugger information. Same as debugging/0 (section B.3.1,
page B1))

+ spy this set a spy-point on the current goal. Uses spy/1 (section B.3.3,
page B1)

- nospy this remove a spy-point on the current goal. Uses nospy/1 (section B.3.3,
page B1)

* spy conditionally | ask for a term Goal, Port, Test (terminated by a dot) and
set a conditional spy-point on the current predicate. Goal and
the current goal must have the same predicate indicator. Uses
spypoint_condition/3 (section B.3.3, page B1))

L listing list the clauses associated to the current predicate. Uses 1isting/1
(section .23.3, page [[33)

a abort abort the current execution. Same as abort/0 (section [.18.1),
page [[T1)

b break invoke a recursive top-level. Same as break/0 (section [.18.1],
page [[T1)

@ execute goal ask for a goal and execute it

< set print depth | ask for an integer and set the print depth to this value (-1 for no
depth limit)

hor? help display a summary of available commands
W WAM debugger | invoke the low-level WAM debugger (section B.6, page B4)

34

3 DEBUGGING

3.6 The WAM debugger

In some cases it is interesting to have access to the WAM data structures. This sub-debugger allows
the user to inspect/modify the contents of any stack or register of the WAM. The WAM debugger is
invoked using the built-in predicate wam_debug/0 (section B-3.1], page Bll) or the W debugger command
(section B.H, page BZ). The following table presents the specific commands of the WAM debugger:

| Command | Description |
write 4 [N] write N terms starting at the address 4 using write/1 (section [.14.6, page P4)
data 4 [N] display N words starting at the address 4
modify 4 [N] display and modify ¥ words starting at the address 4
where SA display the real address corresponding to SA
what RA display what corresponds to the real address R4
deref 4 display the dereferenced word starting at the address 4
envir [S4] display the contents of the environment located at S4 (or the current one)
backtrack [SA] | display the contents of the choice-point located at SA (or the current one)
backtrack all | display all choice-points
quit quit the WAM debugger
help display a summary of available commands

In the above table the following conventions apply:

elements between [and] are optional.

e N is an optional integer (defaults to 1).

index (defaults to 0). BANK_NAME is either:
— reg: WAM general register (stack pointers, continuation, ...).

— x: WAM X register (temporary variables, i.e. arguments).

— y: WAM Y register (permanent variables).

STACK_NAME: WAM stack (STACK_NAME in local, global, trail, cstr).

S4 is a WAM stack address, i.e. STACK.NAME [[N 1] (special case of WAM addresses).

4 is a WAM address, its syntax is: BANK_-NAME [[N 1], i.e. a bank name possibly followed by an

RA is a real address, its syntax is the syntax of C integers (in particular the notation Ox... is
recognized).

It is possible to only use the first letters of a commands and bank names when there is no ambiguity. Also
the square brackets [] enclosing the index of a bank name can be omitted. For instance the following
command (showing the contents of 25 consecutive words of the global stack from the index 3): data
global[3] 25 can be abbreviated as: d g 3 25.

35

4 Format of definitions

4.1 General format

The definition of control constructs, directives and built-in predicates is presented as follows:
Templates

Specifies the types of the arguments and which of them shall be instantiated (mode). Types and modes
are described later (section [.9, page B3).

Description

Describes the behavior (in the absence of any error conditions). It is explicitly mentioned when a built-
in predicate is re-executable on backtracking. Predefined operators involved in the definition are also
mentioned.

Errors

Details the error conditions. Possible errors are detailed later (section [.3, page B1). For directives, this
part is omitted.

Portability

Specifies whether the definition conforms to the ISO standard or is a GNU Prolog extension.

4.2 Types and modes

The templates part defines, for each argument of the concerned built-in predicate, its mode and type.
The mode specifies whether or not the argument must be instantiated when the built-in predicate is
called. The mode is encoded with a symbol just before the type. Possible modes are:

e +: the argument must be instantiated.
e —: the argument must be a variable (will be instantiated if the built-in predicate succeeds).
e 7: the argument can be instantiated or a variable.

The type of an argument is defined by the following table:

36 4 FORMAT OF DEFINITIONS
| Type Description
TYPE 1ist a list whose the type of each element is TYPE
TYPE1 or_TYPE2 a term whose type is either TYPE! or TYPE2
atom an atom
atom_property an atom property (section [5.19.12, page)
boolean the atom true or false
byte an integer > 0 and < 255
callable_term an atom or a compound term
character a single character atom
character_code an integer > 1 and < 255
clause a clause (fact or rule)

close_option

a close option (section .10.7, page [r1])

compound_term

a compound term

evaluable

an arithmetic expression (sectlon

fd_bool_evaluable

, page E
a boolean FD expression (sectlon

fd_labeling_option

page I
an FD labeling option (section [7.9. 1] page [L73

fd_evaluable

an arithmetic FD expression (section [7.6.1], page 164

fd_variable

an FD variable

flag a Prolog flag (section .22.1, page [129)

float a floating point number

head a head of a clause (atom or compound term)
integer an integer

in byte an integer > 0 and < 255 or -1 (for the end-of-file)

in_character

a single character atom or the atom end_of file (for the end-of-file)

in_character_code

an integer > 1 and < 255 or -1 (for the end-of-file)

io_mode an atom in: read, write or append

list the empty list [1 or a non-empty list [_]_]
nonvar any term that is not a variable

number an integer or a floating point number

operator_specifier

an operator specifier (section p.14.1(, page @)

os_file_property

an operating system file property (section [.27.11], page [[43)

predicate_indicator

a term Name/Arity where Name is an atom and Arity an integer > 0. A
callable term can be given if the strict_iso Prolog flag is switched off

(section [-22.7], page [[29)

predicate_property

a predicate property (section [(.8.2, page @)

read_option

a read option (section [f.14.1], page P0)

socket_address

a term of the form ’AF_UNIX’ (A) or ’AF_INET’ (A,N) where A is an atom
and N an integer

socket_domain

an atom in: ’>AF_UNIX’ or ’AF_INET’

source_sink

an atom identifying a source or a sink

stream

a stream-term: a term of the form ’>$stream’ (N) where N is an integer > 0

stream_option

a stream option (section [5.10.6, page p9)

stream_or_alias

a stream-term or an alias (atom)

stream_position

a stream position: a term ’$stream position’(I1, I2, I3, I4) where

I1, I2, I3 and I4 are integers

stream_property

a stream property (section .10.10, page [r3)

stream_seek_method

an atom in: bof, current or eof

term

any term

var_binding_option

write_option

a variable binding option (section [6.5.3, page @)
a write option (section [.14.6, page P4)

4.3 Errors 37

4.3 Errors
4.3.1 General format and error context

When an error occurs an exception of the form: error (ErrorTerm, Caller) is raised. ErrorTerm is
a term specifying the error (detailed in next sections) and Caller is a term specifying the context of
the error. The context is either the predicate indicator of the last invoked built-in predicate or an atom
giving general context information.

Using exceptions allows the user both to recover an error using catch/3 (section p.2.4, page 1) and to
raise an error using throw/1 (section p.2.4, page [1).

To illustrate how to write a error cases, let us write a predicate my_pred(X) where X must be an integer:

my_pred(X) :-
(nonvar(X) ->
true
; throw(error(instantiation_error), my_pred/1)),
),
(integer(X) ->
true
; throw(error(type_error(integer, X), my_pred/1))
),

To help the user to write these error cases, a set of system predicates is provided to raise errors. These
predicates are of the form ’$pl_err_...’ and they all refer to the implicit error context. The predi-
cates set_bip_name/2 (section [.22-3, page [[3]]) and current bip name/2 (section (.22.4, page [[31)) are
provided to set and recover the name and the arity associated to this context (an arity < 0 means that
only the atom corresponding to the functor is significant). Using these system predicates the user could
define the above predicate as follow:

my_pred(X) :-
set_bip_name (my_pred,1),
(nonvar(X) ->
true
; ’$pl_err_instantiation’

),
(integer(X) ->
true
; ’$pl_err_type’ (integer, X)
),

The following sections detail each kind of errors (and associated system predicates).

4.3.2 Instantiation error

An instantiation error occurs when an argument or one of its components is variable while an instantiated
argument was expected. ErrorTerm has the following form: instantiation_error.

The system predicate >$pl_err_instantiation’ raises this error in the current error context (sec-

tion .31, page B7).

38 4 FORMAT OF DEFINITIONS

4.3.3 Type error

A type error occurs when the type of an argument or one of its components is not the expected type
(but not a variable). ErrorTerm has the following form: type_error(Type, Culprit) where Type is
the expected type and Culprit the argument which caused the error. Type is one of:

e atom e evaluable e integer

e atomic e fd_bool_evaluable e list

e boolean e fd_evaluable e number

e byte e fd variable e predicate_indicator
e callable e float e variable

e character e in byte

e compound e in _character

The system predicate ’$pl_err_type’ (Type, Culprit) raises this error in the current error context

(section f371], page B7).

4.3.4 Domain error

A domain error occurs when the type of an argument is correct but its value is outside the expected
domain. ErrorTerm has the following form: domain_error(Domain, Culprit) where Domain is the
expected domain and Culprit the argument which caused the error. Domain is one of:

e atom_property e operator_priority e statistics_value
e buffering mode e operator_specifier e stream
e character_code_list e os_file permission e stream_option
e close_option e os_file property e stream or_alias
e date_time e os_path e stream position
e eof_action ¢ predicate property e stream property
e fd_labeling option e prolog flag e stream_seek method
e flag value e read_option e stream_type
e format_control_sequence e selectable_item e term stream or.alias
* g-array-index * socket-address e var_binding option
e io_mode e socket_domain . .

e write_option
e non_empty_list e source sink
e not less than zero e statistics key

The system predicate *$pl_err_domain’ (Domain, Culprit) raises this error in the current error context

(section f.370], page B7).

4.3 Errors 39

4.3.5 Existence error

an existence error occurs when an object on which an operation is to be performed does not exist.
ErrorTerm has the following form: existence_error(Object, Culprit) where Object is the type of
the object and Culprit the argument which caused the error. Object is one of:

e procedure e source_sink e stream

The system predicate ’$pl_err_existence’ (Object, Culprit) raises this error in the current error
context (section [I.3.1], page B7).

4.3.6 Permission error

A permission error occurs when an attempt to perform a prohibited operation is made. ErrorTerm
has the following form: permission_error(Operation, Permission, Culprit) where Operation is
the operation which caused the error, Permission the type of the tried permission and Culprit the
argument which caused the error. Operation is one of:

e access e create e open
e add_alias e input e output
e close e modify e reposition

and Permission is one of:

e binary_stream e past_end of_stream e static_procedure
e flag e private_procedure e stream
e operator e source_sink e text_stream

The system predicate ’$pl_err_permission’ (Operation, Permission, Culprit) raises this error in
the current error context (section {31, page B1).

4.3.7 Representation error

A representation error occurs when an implementation limit has been breached. ErrorTerm has the
following form: representation_error(Limit) where Limit is the name of the reached limit. Limit
is one of:

e character e max_arity e too_many_variables
e character_code e max_integer
e in_character_code e min_integer

The errors max_integer and min_integer are not currently implemented.

The system predicate *$pl_err _representation’ (Limit) raises this error in the current error context

(section f.3.1], page B7).

40 4 FORMAT OF DEFINITIONS

4.3.8 Evaluation error

An evaluation error occurs when an arithmetic expression gives rise to an exceptional value. ErrorTerm
has the following form: evaluation_error (Error) where Error is the name of the error. Error is one

of:

o float_overflow e undefined e zero_divisor

e int overflow e underflow
The errors float_overflow, int_overflow, undefined and underflow are not currently implemented.
The system predicate ’$pl_err_evaluation’ (Error) raises this error in the current error context (sec-

tion 3.1, page B7).

4.3.9 Resource error

A resource error occurs when GNU Prolog does not have enough resources. ErrorTerm has the following
form: resource_error (Resource) where Resource is the name of the resource. Resource is one of:

e print_object_not_linked e too_big fd_constraint e too_many_open_streams

The system predicate ’$pl_err_resource’ (Resource) raises this error in the current error context (sec-

tion 3.1, page B7).

4.3.10 Syntax error

A syntax error occurs when a sequence of character does not conform to the syntax of terms. ErrorTerm
has the following form: syntax_error(Error) where Error is an atom explaining the error.

The system predicate ’$pl_err_syntax’ (Error) raises this error in the current error context (sec-

tion .31, page B7).

4.3.11 System error

A system error can occur at any stage. A system error is generally associated to an external component
(e.g. operating system). ErrorTerm has the following form: system error(Error) where Error is
an atom explaining the error. This is an extension to ISO which only defines system_error without
arguments.

The system predicate ’$pl_err_system’ (Error) raises this error in the current error context (sec-

tion [L3:1], page B1).

41

5 Prolog directives and control constructs

5.1 Prolog directives
5.1.1 Introduction

Prolog directives are annotations inserted in Prolog source files for the compiler. A Prolog directive is
used to specify:

e the properties of some procedures defined in the source file.
e the format and the syntax for read-terms in the source file (using changeable Prolog flags).
e included source files.

e a goal to be executed at run-time.

5.1.2 dynamic/1

Templates

dynamic (+predicate_indicator)
dynamic(+predicate_indicator_list)
dynamic (+predicate_indicator_sequence)

Description
dynamic(Pred) specifies that the procedure whose predicate indicator is Pred is a dynamic procedure.

This directive makes it possible to alter the definition of Pred by adding or removing clauses. For more
information refer to the section about dynamic clause management (section B.7.1), page p0).

This directive shall precede the definition of Pred in the source file.

If there is no clause for Pred in the source file, Pred exists however as an empty predicate (this means
that current_predicate(Pred) succeeds).

In order to allow multiple definitions, Pred can also be a list of predicate indicators or a sequence of
predicate indicators using ’,’/2 as separator.

Portability

ISO directive.

5.1.3 public/1

Templates

public(+predicate_indicator)
public(+predicate_indicator_list)
public(+predicate_indicator_sequence)

Description
public(Pred) specifies that the procedure whose predicate indicator is Pred is a public procedure. This

directive makes it possible to inspect the clauses of Pred. For more information refer to the section about
dynamic clause management (section p.7.1], page p0).

42 5 PROLOG DIRECTIVES AND CONTROL CONSTRUCTS

This directive shall precede the definition of Pred in the source file. Since a dynamic procedure is also
public. It is useless (but correct) to define a public directive for a predicate already declared as dynamic.

In order to allow multiple definitions, Pred can also be a list of predicate indicators or a sequence of
predicate indicators using ’,’/2 as separator.

Portability

GNU Prolog directive. The ISO reference does not define any directive to declare a predicate public
but it does distinguish public predicates. It is worth noting that in most Prolog systems the public/1
directive is as a visibility declaration. Indeed, declaring a predicate as public makes it visible from any
predicate defined in any other file (otherwise the predicate is only visible from predicates defined in the
same source file as itself). When a module system is incorporated in GNU Prolog a more general visibility
declaration shall be provided conforming to the ISO reference.

5.1.4 multifile/1

Templates

multifile(+predicate_indicator)
multifile(+predicate_indicator_list)
multifile(+predicate_indicator_sequence)

Description

multifile(Pred) is not supported by GNU Prolog. When such a directive is encountered it is simply
ignored. All clauses for a given predicate must reside in a single file.

Portability

ISO directive. Not supported.

5.1.5 discontiguous/1

Templates

discontiguous (+predicate_indicator)
discontiguous (+predicate_indicator_list)
discontiguous (+predicate_indicator_sequence)

Description

discontiguous(Pred) specifies that the procedure whose predicate indicator is Pred is a discontiguous
procedure. Namely, the clauses defining Pred are not restricted to be consecutive but can appear anywhere
in the source file.

This directive shall precede the definition of Pred in the source file.

In order to allow multiple definitions, Pred can also be a list of predicate indicators or a sequence of
predicate indicators using ’,’/2 as separator.

Portability
ISO directive. The ISO reference document states that if there is no clause for Pred in the source file,

Pred exists however as an empty predicate (i.e. current_predicate(Pred) will succeed). This is not
the case for GNU Prolog.

5.1 Prolog directives 43

5.1.6 ensure_linked/1

Templates

ensure_linked(+predicate_indicator)
ensure_linked(+predicate_indicator_list)
ensure_linked(+predicate_indicator_sequence)

Description

ensure_linked(Pred) specifies that the procedure whose predicate indicator is Pred must be included
by the linker. This directive is useful when compiling to native code to force the linker to include the code
of a given predicate. Indeed, if the gplc is invoked with an option to reduce the size of the executable
(section P43, page BI), the linker only includes the code of predicates that are statically referenced.
However, the linker cannot detect dynamically referenced predicates (used as data passed to a meta-call
predicate). The use of this directive prevents it to exclude the code of such predicates.

In order to allow multiple definitions, Pred can also be a list of predicate indicators or a sequence of
predicate indicators using ’,’/2 as separator.

Portability

GNU Prolog directive.

5.1.7 built_in/0, built_in/1, built_in £d4/0, built_in fd/1

Templates

built_in

built_in(+predicate_indicator)
built_in(+predicate_indicator_list)
built_in(+predicate_indicator_sequence)
built_in_fd

built_in fd(+predicate_indicator)
built_in_fd(+predicate_indicator_list)
built_in fd(+predicate_indicator_sequence)

Description

built_in specifies that the procedures defined from now have the built_in property (section p.8.9,

page [4).

built_in(Pred) is similar to built_in/0 but only affects the procedure whose predicate indicator is
Pred.

This directive shall precede the definition of Pred in the source file.

In order to allow multiple definitions, Pred can also be a list of predicate indicators or a sequence of
predicate indicators using ’,’/2 as separator.

built_in fd (resp. built_in fd(Pred)) is similar to built_in (resp. built_in(Pred)) but sets the
built_in fd predicate property (section p.8.2, page p4).

Portability

GNU Prolog directives.

44 5 PROLOG DIRECTIVES AND CONTROL CONSTRUCTS

5.1.8 include/1

Templates

include (+atom)
Description
include(File) specifies that the content of the Prolog source File shall be inserted. The resulting
Prolog text is identical to the Prolog text obtained by replacing the directive by the content of the Prolog
source File.
See absolute_file name/2 for information about the syntax of File (section p.26.1], page [37).

Portability

ISO directive.

5.1.9 ensure_loaded/1

Templates
ensure_loaded (+atom)

Description

ensure_loaded(File) is not supported by GNU Prolog. When such a directive is encountered it is
simply ignored.

Portability

ISO directive. Not supported.

5.1.10 op/3

Templates
op(+integer, +operator_specifier, +atom_or_atom_list)

Description

op(Priority, OpSpecifier, Operator) alters the operator table. This directive is executed as soon
as it is encountered by calling the built-in predicate op/3 (section p.14.17, page P9). A system directive
is also generated to reflect the effect of this directive at run-time (section P-4.4, page B9).

Portability

ISO directive.

5.1.11 char_conversion/2

Templates

char_conversion(+character, +character)

5.1 Prolog directives 45

Description

char _conversion(InChar, OutChar) alters the character-conversion mapping. This directive is exe-
cuted as soon as it is encountered by a call to the built-in predicate char_conversion/2 (section p.14.12,
page [[0T)). A system directive is also generated to reflect the effect of this directive at run-time (sec-

tion 2, page P4).
Portability

ISO directive.

5.1.12 set_prolog flag/2

Templates
set_prolog flag(+flag, +term)

Description

set_prolog flag(Flag, Value) sets the value of the Prolog flag Flag to Value. This directive is exe-
cuted as soon as it is encountered by a call to the built-in predicate set_prolog flag/2 (section [.22.1],
page [29). A system directive is also generated to reflect the effect of this directive at run-time (sec-

tion B.4.4, page B4).
Portability

ISO directive.

5.1.13 initialization/1

Templates
initialization(+callable_term)

Description

initialization(Goal) adds Goal to the set of goal which shall be executed at run-time. A user directive
is generated to execute Goal at run-time. If several initialization directives appear in the same file they
are executed in the order of apparition (section P.4.4, page P4).

Portability

ISO directive.

5.1.14 foreign/2, foreign/1

Templates

foreign(+callable_term, +foreign option_list)
foreign(+callable_term)

Description

46 5 PROLOG DIRECTIVES AND CONTROL CONSTRUCTS

foreign(Template, Options) defines an interface predicate whose prototype is Template according to
the options given by Options. Refer to the foreign code interface for more information (section B,

page [77).
foreign(Template) is equivalent to foreign(Template, []).
Portability

GNU Prolog directive.

5.2 Prolog control constructs
5.2.1 true/0, fail/0, !/0

Templates

true
fail
!
Description
true always succeeds.

fail always fails (enforces backtracking).

! always succeeds and the for side-effect of removing all choice-points created since the invocation of the
predicate activating it.

Errors
None.
Portability

ISO control constructs.

5.2.2 (’,’)/2 - conjunction, (;)/2 - disjunction, (->)/2 - if-then

Templates

> 7 (+callable_term, +callable_term)
; (+callable_term, +callable_term)
->(+callable_term, +callable_term)

Description

Goall , Goal2 executes Goall and, in case of success, executes Goal?2.

Goall ; Goal2 first creates a choice-point and executes Goall. On backtracking Goal2 is executed.
Goall -> Goal2 first executes Goall and, in case of success, removes all choice-points created by Goall

and executes Goal2. This control construct acts like an if-then (Goall is the test part and Goal2 the then
part). Note that if Goall fails ->/2 fails also. ->/2 is often combined with ;/2 to define an if-then-else

5.2 Prolog control constructs 47

as follows: Goall -> Goal2 ; Goal3. Note that Goall -> Goal?2 is the first argument of the (;)/2
and Goal3 (the else part) is the second argument. Such an if-then-else control construct first creates a
choice-point for the else-part (intuitively associated to ;/2) and then executes Goall. In case of success,
all choice-points created by Goall together with the choice-point for the else-part are removed and Goal2
is executed. If Goall fails then Goal3 is executed.

>, 7. ; and —> are predefined infix operators (section [.14.10, page P9).

Errors
Goall or Goal2 is a variable instantiation_error
Goall is neither a variable nor a callable term type_error(callable, Goall)
Goal2 is neither a variable nor a callable term type_error(callable, Goal2)

The predicate indicator Pred of Goall or Goal2 | existence_error(procedure, Pred)
does not correspond to an existing procedure
and the value of the unknown Prolog flag is

error (section 5.22.1], page [[29)

Portability

ISO control constructs.

5.2.3 call/1

Templates
call(+callable_term)

Description

call(Goal) executes Goal. call/1 succeeds if Goal represents a goal which is true. When Goal contains
a cut symbol ! (section b.2.1], page [If) as a subgoal, the effect of ! does not extend outside Goal.

Errors
Goal is a variable instantiation_error
Goal is neither a variable nor a callable term type_error(callable, Goal)
The predicate indicator Pred of Goal does not existence_error (procedure, Pred)

correspond to an existing procedure and the
value of the unknown Prolog flag is error

(section [.22.1], page [[29)

Portability

ISO control construct.

5.2.4 catch/3, throw/1

Templates

catch(7callable_term, ?term, 7term)
throw (+nonvar)

Description

48 5 PROLOG DIRECTIVES AND CONTROL CONSTRUCTS

catch(Goal, Catcher, Recovery) is similar to call(Goal) (section [.2.3, page 7). If this succeeds or
fails, so does the call to catch/3. If however, during the execution of Goal, there is a call to throw(Ball),
the current flow of control is interrupted, and control returns to a call of catch/3 that is being executed.
This can happen in one of two ways:

e implicitly, when an error condition for a built-in predicate is satisfied.

e explicitly, when the program executes a call of throw/1 because the program wishes to abandon
the current processing, and instead to take an alternative action.

throw(Ball) causes the normal flow of control to be transferred back to an existing call of catch/3.
When a call to throw(Ball) happens, Ball is copied and the stack is unwound back to the call to
catch/3, whereupon the copy of Ball is unified with Catcher. If this unification succeeds, then catch/3
executes the goal Recovery using call/1 (section p.2.J, page 1) in order to determine the success or
failure of catch/3. Otherwise, in case the unification fails, the stack keeps unwinding, looking for an
earlier invocation of catch/3. Ball may be any non-variable term.

Errors
Goal is a variable instantiation_error
Goal is neither a variable nor a callable term type_error(callable, Goal)
The predicate indicator Pred of Goal does not existence_error(procedure, Pred)

correspond to an existing procedure and the
value of the unknown Prolog flag is error

(section .22.1], page [[29)

Ball is a variable instantiation_error

If Ball does not unify with the Catcher argument of any call of catch/3, a system error message is
displayed and throw/1 fails.

When catch/3 calls Recovery it uses call/1 (section p.2.3, page [[1]), an instantiation_error, a
type_error or an existence_error can then occur depending on Recovery.

Portability

ISO control constructs.

49

6 Prolog built-in predicates

6.1 Type testing

6.1.1 var/1, nonvar/1, atom/1, integer/1, float/1, number/1, atomic/1,
compound/1, callable/1, list/1, partial 1list/1, list_or_partial list/1

Templates
var (7term) atomic(?term)
nonvar (7term) compound (?term)
atom(?term) callable(?term)
integer(?term) list(7term)
float(?term) partial list(7term)
number (7term) list_or_partial list(7term)
Description

var (Term) succeeds if Term is currently uninstantiated (which therefore has not been bound to anything,
except possibly another uninstantiated variable).

nonvar (Term) succeeds if Term is currently instantiated (opposite of var/1).

atom(Term) succeeds if Term is currently instantiated to an atom.

integer(Term) succeeds if Term is currently instantiated to an integer.

float (Term) succeeds if Term is currently instantiated to a floating point number.

number (Term) succeeds if Term is currently instantiated to an integer or a floating point number.
atomic (Term) succeeds if Term is currently instantiated to an atom, an integer or a floating point number.

compound (Term) succeeds if Term is currently instantiated to a compound term, i.e. a term of arity > 0
(a list or a structure).

callable(Term) succeeds if Term is currently instantiated to a callable term, i.e. an atom or a compound
term.

list(Term) succeeds if Term is currently instantiated to a list, i.e. the atom [] (empty list) or a term
with principal functor ’.’/2 and with second argument (the tail) a list.

partial list(Term) succeeds if Term is currently instantiated to a partial list, i.e. a variable or a term
whose the main functor is ’. /2 and the second argument (the tail) is a partial list.

list_or_partial_list(Term) succeeds if Term is currently instantiated to a list or a partial list.
Errors

None.

Portability

var/1, nonvar/1, atom/1, integer/1, float/1, number/1, atomic/1, compound/1 and callable/1 are
ISO predicates.

a0 6 PROLOG BUILT-IN PREDICATES

list/1, partial 1list/1 and list_or_partial list/1 are GNU Prolog predicates.

6.2 Term unification
6.2.1 (=)/2 - Prolog unification

Templates
=(7term, 7term)

Description

Terml = Term2 unifies Term1 and Term2. No occurs check is done, i.e. this predicate does not check if a
variable is unified with a compound term containing this variable (this can lead to an infinite loop).

= is a predefined infix operator (section B.14.17, page P9).
Errors

None.

Portability

ISO predicate.

6.2.2 unify with occurs_check/2

Templates
unify with_ occurs_check(?term, ?term)

Description

unify with occurs_check(Terml, Term2) unifies Terml and Term2. The occurs check test is done (i.e.
the unification fails if a variable is unified with a compound term containing this variable).

Errors
None.
Portability

ISO predicate.

6.2.3 (\=)/2 - not Prolog unifiable

Templates
\=(7term, 7term)

Description

Terml \= Term2 succeeds if Terml and Term2 are not unifiable (no occurs check is done).

6.3 Term comparison 51

\= is a predefined infix operator (section p.14.1(, page P9).
Errors

None.

Portability

ISO predicate.

6.3 Term comparison
6.3.1 Standard total ordering of terms

The built-in predicates described in this section allows the user to compare Prolog terms. Prolog terms
are totally ordered according to the standard total ordering of terms which is as follows (from the smallest
term to the greatest):

e variables, oldest first.

e finite domain variables (section [[.1.1], page [[59), oldest first.
e floating point numbers, in numeric order.

e integers, in numeric order.

e atoms, in alphabetical (i.e. character code) order.

e compound terms, ordered first by arity, then by the name of the principal functor and by the
arguments in left-to-right order.

A list is treated as a compound term (whose principal functor is *.°/2).

The portability of the order of variables is not guaranteed (in the ISO reference the oder of variables is
system dependent).

6.3.2 (==)/2 - term identical, (\==)/2 - term not identical,
(@<)/2 - term less than, (6=<)/2 - term less than or equal to,
(@>)/2 - term greater than, (@>=)/2 - term greater than or equal to

Templates
==(?term, ?7term) @=<(7term, ?term)
\==(7term, 7term) ©>(?term, 7term)
@< (7term, 7term) @>=(7term, ?term)
Description

These predicates compare two terms according to the standard total ordering of terms (section .3.],

page B1)).
Terml == Term2 succeeds if Terml and Term2 are equal.
Terml \== Term2 succeeds if Terml and Term2 are different.

Terml @< Term2 succeeds if Terml is less than Term?2.

92 6 PROLOG BUILT-IN PREDICATES

Terml @=< Term2 succeeds if Terml is less than or equal to Term2.

Terml @> Term2 succeeds if Terml is greater than Term?2.

Terml @>= Term?2 succeeds if Terml is greater than or equal to Term2.

==, \==, 0<, 0=<, @ and @>= are predefined infix operators (section p.14.1(, page P9).
Errors

None.

Portability

ISO predicates.

6.3.3 compare/3

Templates
compare(?7atom, +term, +term)

Description

compare(Result, Terml, Term2) compares Terml and Term2 according to the standard (section p.3.1,
page pll) and unifies Result with:

e the atom < if Terml is less than Term2.

e the atom = if Term1 and Term2 are equal.
e the atom > if Terml is greater than Term2.

Errors

| Result is neither a variable nor an atom type_error(atom, Result)

Portability

GNU Prolog predicate.

6.4 Term processing
6.4.1 functor/3

Templates

functor (+nonvar, 7atomic, ?7integer)
functor(-nonvar, +atomic, +integer)

Description
functor(Term, Name, Arity) succeeds if the principal functor of Term is Name and its arity is Arity.
This predicate can be used in two ways:

e Term is not a variable: extract the name (an atom or a number if Term is a number) and the arity
of Term (if Term is atomic Arity = 0).

6.4 Term processing 53

e Term is a variable: unify Term with a general term whose principal functor is given by Name and
arity is given by Arity.

Errors
Term and Name are both variables instantiation_error
Term and Arity are both variables instantiation_error

Term is a variable and Name is neither a variable | type_error(atomic, Name)
nor an atomic term
Term is a variable and Arity is neither a variable | type_error(integer, Arity)
nor an integer
Term is a variable, Name is a constant but not an | type_error(atom, Name)
atom and Arity is an integer > 0

Term is a variable and Arity is an integer > representation_error (max_arity)

max_arity flag (section f.22.1], page [[29)

Term is a variable and Arity is an integer < 0 domain_error(not_less_than zero, Arity)
Portability

ISO predicate.

6.4.2 arg/3

Templates
arg(+integer, +compound term, 7term)

Description

arg(N, Term, Arg) succeeds if the Nth argument of Term is Arg.

Errors

N is a variable instantiation_error

Term is a variable instantiation_error

N is neither a variable nor an integer type_error(integer, N)

Term is neither a variable nor a compound term | type_error(compound, Term)

N is an integer < 0 domain_error(not_less_than_zero, N)
Portability

ISO predicate.

6.4.3 (=..)/2 - univ

Templates

=..(+nonvar, 7list)
=..(-nonvar, +list)

Description

Term =.. List succeeds if List is a list whose head is the atom corresponding to the principal functor
of Term and whose tail is a list of the arguments of Term.

=.. is a predefined infix operator (section p.14.10, page P9).

o4

6 PROLOG BUILT-IN PREDICATES

Errors

Term is a variable and List is a partial list

instantiation_error

List is neither a partial list nor a list

type_error(list, List)

Term is a variable and List is a list whose head
is a variable

instantiation_error

List is a list whose head H is neither an atom nor
a variable and whose tail is not the empty list

type_error (atom, H)

List is a list whose head H is a compound term
and whose tail is the empty list

type_error(atomic, H)

Term is a variable and List is the empty list

domain_error(non_empty_list, [])

Term is a variable and the tail of List has a
length > max_arity flag (section p.22.1],

page [[29)

representation_error(max_arity)

Portability

ISO predicate.

6.4.4 copy-term/2

Templates
copy-term(?term, ?term)

Description

copy_term(Terml, Term2) succeeds if Term2 unifies with a term T which is a renamed copy of Term1.

Errors
None.
Portability

ISO predicate.

6.4.5 setarg/4, setarg/3

Templates

setarg(+integer, +compound_term, +term, +boolean)

setarg(+integer, +compound_term, +term)

Description
setarg(N, Term, NewValue, Undo) replaces destructively the Nth argument of Term with NewValue.
This assignment is undone on backtracking if Undo = true. This should only used if there is no further
use of the old value of the replaced argument. If Undo = false then NewValue must be either an atom
or an integer.

setarg(N, Term, NewValue) is equivalent to setarg(N, Term, NewValue, true).

Errors

6.5 Variable naming/numbering 55

N is a variable instantiation_error

N is neither a variable nor an integer type_error(integer, N)

N is an integer < 0 domain_error(not_less_than zero, N)
Term is a variable instantiation_error

Term is neither a variable nor a compound term | type_error (compound, Term)
NewValue is neither an atom nor an integer and | type_error(atomic, NewValue)
Undo = false

Undo is a variable instantiation_error
Undo is neither a variable nor a boolean type_error(boolean, Undo)
Portability

GNU Prolog predicate.

6.5 Variable naming/numbering
6.5.1 name_singleton_vars/1

Templates
name_singleton_vars(7term)

Description

name_singleton vars(Term) binds each singleton variable appearing in Term with a term of the form
>$VARNAME’ (°_?). Such a term can be output by write_term/3 as a variable name (section B.14.,

page p4).
Errors
None.
Portability

GNU Prolog predicates.

6.5.2 name_query_vars/2

Templates
name_query_vars(+list, ?list)

Description

name_query_vars(List, Rest) for each element of List of the form Name = Var where Name is an
atom and Var a variable, binds Var with the term >$VARNAME’ (Name). Such a term can be output by
write_term/3 as a variable name (section p.14.6, page P4). Rest is unified with the list of elements
of List that have not given rise to a binding. This predicate is provided as a way to name the vari-
able lists obtained returned by read_term/3 with variable names(List) or singletons(List) options

(section B.14.1, page P0).

Errors

96 6 PROLOG BUILT-IN PREDICATES

List is a partial list instantiation_error

List is neither a partial list nor a list type_error(list, List)

Rest is neither a partial list nor a list type_error(list, Rest)
Portability

GNU Prolog predicate.

6.5.3 bind variables/2, numbervars/3, numbervars/1

Templates

bind variables(7term, +var_binding option_list)
numbervars(?term, +integer, 7integer)
numbervars (?term)

Description

bind_variables(Term, Options) binds each variable appearing in Term according to the options given
by Options.

Variable binding options: Options is a list of variable binding options. If this list contains contradic-
tory options, the rightmost option is the one which applies. Possible options are:

e numbervars: specifies that each variable appearing in Term should be bound to a term of the form
>$VAR’ (N) where N is an integer. Such a term can be output by write_term/3 as a variable name
(section p.14.6, page P4). This is the default.

e namevars: specifies that each variables appearing in Term shall be bound to a term of the form
>$VARNAME’ (Name) where Name is the atom that would be output by write_term/3 seeing a term
of the *$VAR’ (N) where N is an integer. Such a term can be output by write_term/3 as a variable
name (section p.14.6, page P4). This is the alternative to numbervars.

e from(From): the first integer N to use for number/name variables of Term is From. The default
value is 0.

e next(Next): when bind variables/2 succeeds, Next is unified with the (last integer N)+1 used to
bind the variables of Term.

e exclude(List): collects all variable names appearing in List to avoid a clash when binding a
variable of Term. Precisely a number N > From will not be used to bind a variable of Term if:
— there is a sub-term of List of the form ’>$VAR’ (N) or >$VARNAME’ (Name) where Name is the
constant that would be output by write_term/3 seeing a term of the >$VAR’ (N).

— an element of List is of the form Name = Var where Name is an atom that would be output
by write_term/3 on seeing a term of the from ’$VAR’ (N). This case allows for lists returned
by read term/3 (with variable names(List) or singletons(List) options) (section p.14.1],
page PU) and by name_query_vars/2 (section (.5.4, page b3).

numbervars(Term, From, Next) is equivalent to bind variables(Term, [from(From), next(Next)],
i.e. each variable of Term is bound to >$VAR’ (N) where From < N < Next.

numbervars (Term) is equivalent to numbervars(Term, 0, _).

Errors

6.6 Arithmetic 57

Options is a partial list or a list with an element | instantiation_error

E which is a variable

Options is neither a partial list nor a list type_error(list, Options)

an element E of the Options list is neither a domain_error(var_binding option, E)

variable nor a variable binding option

From is a variable instantiation error

From is neither a variable nor an integer type_error(integer, From)

Next is neither a variable nor an integer type_error(integer, Next)

List is a partial list instantiation _error

List is neither a partial list nor a list type_error(list, List)
Portability

GNU Prolog predicates.

6.5.4 term_ref/2

Templates

term ref (+term, 7integer)
term ref (7term, +integer)

Description

term_ref (Term, Ref) succeeds if the internal reference of Term is Ref. This predicate can be used either
to obtain the internal reference of a term or to obtain the term associated to a given reference. Note that
two identical terms can have different internal references. A good way to use this predicate is to first
record the internal reference of a given term and to later re-obtain the term via this reference.

Errors

Term and Ref are both variables instantiation_error

Ref is neither a variable nor an integer type_error(integer, Ref)

Ref is an integer < 0 domain_error(not_less_than zero, Ref)
Portability

GNU Prolog predicate.

6.6 Arithmetic

6.6.1 Evaluation of an arithmetic expression

An arithmetic expression is a Prolog term built from numbers, variables, and functors (or operators)
that represent arithmetic functions. When an expression is evaluated each variable must be bound to
a non-variable expression. An expression evaluates to a number, which may be an integer or a floating
point number. The following table details the components of an arithmetic expression, how they are
evaluated, the types expected/returned and if they are ISO or an extension:

98 6 PROLOG BUILT-IN PREDICATES

| Expression | Result = eval(Expression) | Signature | 1ISO |
Variable must be bound to a non-variable expression E. IF — IF Y
The result is eval(E)
integer number this number I—-1 Y
floating point number this number F—-F Y
+ E eval(E) IF — IF N
- E - eval(E) IF — IF Y
inc(E) eval(E) + 1 IF — IF N
dec(E) eval(E) - 1 IF — IF N
E1 + E2 eval(E1) + eval(E2) IF,IF - 1IF | Y
El - E2 eval(E1) - eval(E2) IF,IF - IF | Y
El * E2 eval(E1) * eval(E2) IF,IF - 1IF | Y
El / E2 eval(E1) / eval(E2) IF,IF—-F | Y
E1 // E2 rnd(eval(E1) / eval(E2)) LI -1 Y
El rem E2 eval(E1) - (rnd(eval(E1) / eval(E2))*eval(E2)) L[I—-1 Y
El mod E2 eval(E1) - (| eval(E1) / eval(E2)] *eval(E2)) LI—-1I Y
El /\ E2 eval(E1) bitwise_and eval(E2) L I—-1 Y
E1 \/ E2 eval(E1) bitwise_or eval(E2) LI -1 Y
El - E2 eval(E1) bitwise_xor eval(E2) L[I—-1 N
\ E bitwise_not eval(E) I—-1 Y
El << E2 eval(E1) integer_shift_left eval(E2) L[I—-1 Y
E1 >> E2 eval(E1) integer_shift right eval(E2) LI -1 Y
abs(E) absolute value of eval(E) IF — IF Y
sign(E) sign of eval(E) (-1 if < 0, 0if =0, +1 if > 0) IF — IF Y
El *x E2 eval(E1) raised to the power of eval(E2) IF,IF-F | Y
sqrt (E) square root of eval(E) IF - F Y
atan(E) arc tangent of eval(E) IF - F Y
cos (E) cosine of eval(E) IF - F Y
sin(E) sine of eval(E) IF - F Y
exp(E) e raised to the power of eval(E) IF - F Y
log(E) natural logarithms of eval(E) IF - F Y
float (E) the floating point number equal to eval(E) IF - F Y
ceiling(E) rounds eval(E) upward to the nearest integer F-I Y
floor(E) rounds eval(E) downward to the nearest integer F—1 Y
round (E) rounds eval(E) to the nearest integer F—-1I Y
truncate (E) the integer value of eval(E) F—-1 Y
float_fractional part(E) | the float equal to the fractional part of eval(E) F—-F Y
float_integer_part (E) the float equal to the integer part of eval(E) F—-F Y

The meaning of the signature field is as follows:
e [— I: unary function, the operand must be an integer and the result is an integer.

e ' — F: unary function, the operand must be a floating point number and the result is a floating
point number.

e F — I: unary function, the operand must be a floating point number and the result is an integer.

e [F — F: unary function, the operand can be an integer or a floating point number and the result
is a floating point number.

e IF — IF: unary function, the operand can be an integer or a floating point number and the result
has the same type as the operand.

e I, I — I: binary function: each operand must be an integer and the result is an integer.

e [F IF — IF: binary function: each operand can be an integer or a floating point number and
the result is a floating point number if at least one operand is a floating point number, an integer
otherwise.

6.6 Arithmetic 59

is, +, -, *, //, /, rem, and mod are predefined infix operators. + and - are predefined prefix operators

(section B.14.10, page BY).

Integer division rounding function: the integer division rounding function rnd (X) rounds the floating
point number X to an integer. There are two possible definitions (depending on the target machine) for
this function which differ on negative numbers:

e rnd (X) = integer part of X, e.g. rnd (-1.5) = -1 (round toward 0)
e rnd (X) = |X], e.g. 7nd (-1.5) = -2 (round toward —oo)

The definition of this function determines the precise definition of the integer division (//)/2 and of the
integer remainder (rem)/2. Rounding toward zero is the most common case. In any case it is possible
to test the value (toward_zero or down) of the integer_rounding function Prolog flag to determine
which function being used (section B.22.1], page [29).

Fast mathematical mode: in order to speed-up integer computations, the GNU Prolog compiler can
generate faster code when invoked with the —-fast-math option (section B.4.3, page BI). In this mode
only integer operations are allowed and a variable in an expression must be bound at evaluation time to
an integer. No type checking is done.

Errors

a sub-expression E is a variable instantiation_error

a sub-expression E is neither a number nor an type_error(evaluable, E)

evaluable functor

a sub-expression E is a floating point number type_error(integer, E)

while an integer is expected

a sub-expression E is an integer while a floating type_error(float, E)

point number is expected

a division by zero occurs evaluation_error(zero_divisor)
Portability

Refer to the above table to determine which evaluable functors are ISO and which are GNU Prolog
extensions. For efficiency reasons, GNU Prolog does not detect the following ISO arithmetic errors:
float_overflow, int_overflow, int_underflow, and undefined.

6.6.2 (is)/2 - evaluate expression

Templates
is(?nonvar, +evaluable)

Description

Result is Expression succeeds if Result can be unified with eval(Expression). Refer to the evaluation
of an arithmetic expression for the definition of the eval function (section p.6.1, page b7).

is is a predefined infix operator (section p.14.10, page B9).

Errors

Refer to the evaluation of an arithmetic expression for possible errors (section B.6.1, page b1).
Portability

ISO predicate.

60 6 PROLOG BUILT-IN PREDICATES

6.6.3 (=:=)/2 - arithmetic equal, (=\=)/2 - arithmetic not equal,
(<) /2 - arithmetic less than, (=<)/2 - arithmetic less than or equal to,
(>)/2 - arithmetic greater than, (>=)/2 - arithmetic greater than or equal to

Templates
=:=(+evaluable, +evaluable) =<(+evaluable, +evaluable)
=\=(+evaluable, +evaluable) >(+evaluable, +evaluable)
<(+evaluable, +evaluable) >=(+evaluable, +evaluable)

Description

Exprl =:= Expr2 succeeds if eval(Exprl) = eval(Expr2).

Exprl =\= Expr2 succeeds if eval(Exprl) # eval(Expr2).
Exprl < Expr2 succeeds if eval(Exprl) < eval(Expr2).
Exprl =< Expr2 succeeds if eval(Exprl) < eval(Expr2).
Exprl > Expr2 succeeds if eval(Exprl) > eval(Expr2).
Exprl >= Expr2 succeeds if eval(Exprl) > eval(Expr2).

Refer to the evaluation of an arithmetic expression for the definition of the eval function (section B.6.1,

page p17).

=:=, =\=, <, =<, > and >= are predefined infix operators (section p.14.1(, page B9).

Errors

Refer to the evaluation of an arithmetic expression for possible errors (section B.6.1, page B1).
Portability

ISO predicates.

6.7 Dynamic clause management
6.7.1 Introduction

Static and dynamic procedures: a procedure is either dynamic or static. All built-in predicates are
static. A user-defined procedure is static by default unless a dynamic/1 directive precedes its definition
(section b.1.2, page []). Adding a clause to a non-existent procedure creates a dynamic procedure. The
clauses of a dynamic procedure can be altered (e.g. using asserta/1), the clauses of a static procedure
cannot be altered.

Private and public procedures: each procedure is either public or private. A dynamic procedure is
always public. Each built-in predicate is private, and a static user-defined procedure is private by default
unless a public/1 directive precedes its definition (section p.I.3, page). If a dynamic declaration
exists it is unnecessary to add a public declaration since a dynamic procedure is also public. A clause
of a public procedure can be inspected (e.g. using clause/2), a clause of a private procedure cannot be
inspected.

6.7 Dynamic clause management 61

A logical database update view: any change in the database that occurs as the result of executing
a goal (e.g. when a sub-goal is a call of assertz/1 or retract/1) only affects subsequent activations.
The change does not affect any activation that is currently being executed. Thus the database is frozen
during the execution of a goal, and the list of clauses defining a predication is fixed at the moment of its
execution.

6.7.2 asserta/l, assertz/1

Templates

asserta(+clause)
assertz(+clause)

Description

asserta(Clause) first converts the term Clause to a clause and then adds it to the current internal
database. The predicate concerned must be dynamic (section p.7.1], page pU) or undefined and the clause
is inserted before the first clause of the predicate. If the predicated is undefined it is created as a dynamic
procedure.

assertz(Clause) acts like asserta/1 except that the clause is added at the end of all existing clauses
of the concerned predicate.

Converting a term Clause to a clause Clausel:

e extract the head and the body of Clause: either Clause = (Head :- Body) or Clause = Head and
Body = true.

e Head must be a callable term (or else the conversion fails).

e convert Body to a body clause (i.e. a goal) Body1.

e the converted clause Clausel = (Head :- Bodyl).
Converting a term T to a goal:

e if T is a variable it is replaced by the term call(T).

e if T is a control construct (?,?)/2, (;)/2 or (->)/2 each argument of the control construct is
recursively converted to a goal.

e if T is a callable term it remains unchanged.

e otherwise the conversion fails (T is neither a variable nor a callable term).

Errors
Head is a variable instantiation_error
Head is neither a variable nor a callable term type_error(callable, Head)
Body cannot be converted to a goal type_error(callable, Body)
The predicate indicator Pred of Head is that of a | permission_error(modify,
static procedure static_procedure, Pred)
Portability

ISO predicates.

62 6 PROLOG BUILT-IN PREDICATES

6.7.3 retract/1

Templates
retract (+clause)

Description

retract(Clause) erases the first clause of the database that unifies with Clause. The concerned pred-
